Compilation for Adaptive
Computers

Experiences and Opportunities

Andreas Koch
Tech. Univ. Braunschweig
Integrated Circuit Design Unit (E.I.S.)

Outline

d High Level Language to Hardware compilation
d Target architectures

d Compiler processing steps

d Hardware generation

d Reconfiguration strategies

d Conclusion

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003 2

ACS Compilers

1 Experiences described based on work with
O Adaptive Compilers
e Garp CC (Tim Callahan @ UC Berkeley)
e Targets Garp simulator
e Nimble (joint effort with Synopsys et al.)
e Targets ACE-II and ACE-V
O Platforms
e Garp (John Hauser @ UC Berkeley)
e Simulated, tightly couples MIPS-II core with RCU
e ACE-II (TSI-Telsys)
e Discrete, loosely couples microSPARC-IIep with 2x XC4085XL

e ACE-V (joint effort with Synopsys et al.)
e Discrete, loosely couples microSPARC-IIep with XCV1000

d Outlook on COMRADE
O Compiler under development at E.I.S.

O Planned targets ACE-V and Xilinx ML300 (V2pro)
¢ ... but always looking for more suitable architectures

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003 3

HLL Compilation

d High-level software programming languages
O Few to no extra user annotations required

d Here focus on imperative languages
O Large user base: C
O Easier to implement: Fortran, subset of Java
e No pointers ...
d Concentrate on implementing loops
O Require bulk of execution-time
d Hardware-infeasible constructs
O Often floating point, I/0, memory management
O Choices: skip loop or handle infrequent exceptions
O Here: exceptions handled by switch to SW

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003 4

Target Architecture

Shared
Memory
CPU RCU
O Processor d Reconfigurable unit
O Fixed Function O Variable function
d Executes J Executes
O Irregular sequences O Regular sequences
e System management O Bulk of computation
O Hardware-infeasible ops e Memory access

O Small part of computation
e Limited performance / power

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003 5

A Tight (short latency communication)

O Frequent SW/HW switches affordable
e More exceptions can be tolerated in HW blocks

O Shorter blocks can be executed on HW
d Loose (long latency communication)
O Fewer SW/HW switches affordable

O Blocks must be longer for efficient HW execution
e Amortize communication overhead over block run-time

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003 6

Shared Memory

d Zero-copy data transfer between RCU and CPU

a Simplified memory management
O No “sram_malloc()"” etc.

d Homogeneous address space
O Pointers freely exchangeable between RCU and CPU

d But: possibly cache coherency issues
d Optionally: RCU-local memory

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003 7

e
VLSI

Anatomy of an ACS Compiler

Front-End Compiler

» architecture-independent optimization

* profiling (commonly dynamic)

» analysis and visualization

» automatic HW/SW-partitioning

« configuration partitioning and scheduling

Architecture
Description

HW-Kernels as CDFG

Datapath Synthesis
» Scheduling

» Technology Mapping

* Module generation

* Floorplanning

Module
Generator
Library

Pre-placed Netlist

SW-Part+Interfaces

HW-Environment —> Place &
,wrapper* Route as C Code
FPGA bit stream ACS
Runtime Lib.
os/apl > Compiler & Linker Hardware

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003 8

Analysis Techniques

A Traditional techniques include
O Control-flow analysis (recognize loops)
O Alias analysis (disambiguate pointers)
O Dynamic profiling (data set dependent)
e Path profiling (also finds block execution counts) *
e Performance profiling (block execution times)
A High hardware relevance
O HW/SW-partitioning based on profiling data *

O Data dependency analysis in loops allows *
e Parallelization
e Scalarization

O Recognize potential use of HW memory streams
d Reconfiguration Emphasis

O Loop Entry Profiling *

O Loop-Procedure Hierarchy Graph *

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003 9

d Relies on path
profiling data
O Block and path

execution
counts

d Find HW-
infeasible
constructs (C)

O If infrequent,

handle via SW
exception

d Find HW-
inefficient
constructs (E)

O If infrequent,

prune and
handle in SW

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003 10

d Data-dependence analysis for later parallelization

d Dedicated hardware operators
O Spatially distributed computation

for (n=0; n<32; ++n) {
a[n] = n + 3;
b[n] = n-5;

n+3
| ‘

n+1

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

11

Analysis for Scalarization

d Data-dependence analysis for later scalarization
O Reduction of memory accesses

[Very efficiently realizable in hardware

O Multi-tap shift-registers, primed in software

N

for (n=2; n<32; ++n) {
a[n] = a[n-1] + a[n-2] + 1;
he

0%

t1+t2+1

n+1

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

12

e
VLSI

Analysis for Reconfiguration

d Kernel: A loop or loop nest
O Smallest unit considered in partitioning
O Nimble limitation: Only inner loops

>
[Questions
tati . ,
o O Which kernels to actually put in HW?
) R TE O Which kernels to put in a configuration?
e Partial reconfiguration inefficient
static e Applies to many current devices

O Nimble: Only 1 kernel per configuration

Column-based

reconfiguration [] Naive approach: Put everything in HW
O Even for fast (10’s of cycles) configuration
X Slowdown of 10x vs. selective approach

=» Minimize inter-kernel reconfigurations

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003 13

Selective RCU Use

d Approach in Nimble Compiler
O Li, Callahan, et al. (DAC2000)
O Can be generalized beyond Nimble limitations

d Requires two kinds of analysis

O Static (data-independent)
e Procedure call tree
e Loop nesting tree

O Dynamic (precision depends on quality of input data)
e Per-block execution time (from profiling)

e Iteration count for loops (- -)
e Loop execution entry sequence

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003 14

Static Analysis

d Loop Procedure Hierarchy Graph (LPHG)
O Calling structure of functions
O Nesting structure of loops

main()

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

15

Dynamic Analysis

d Loop Entry Profiling
O Determines temporal
order of loop entries
e But not iterations!
O Dynamic profiling,
quality dependent on
data set

Example:
el flf2f3f1f2f3f1f2f3f4 bl

&

—)

=

(2) ()= (=)
®@

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

16

Assign Kernels to RCU

J Problem:

Find program-wide best assignment of n
kernels to RCU, minimizing reconfigurations

[Heuristic for tackling this O(2") problem

O Cluster all kernels in LPHG sharing predecessor

e Assumption: Clustered kernels compete for RCU, no
interference between different clusters

e Predecessor: Outer loop or enclosing function
e Limit cluster size (e.g., to 5), split larger clusters

O For all possible combinations of cluster contents
e Compute # of required reconfigurations from LEP

O Pick per-cluster optimum selection of HW kernels
e At least one HW-candidate kernel from each cluster

O Each of these kernels will become an RCU configuration

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003 17

Nimble Example

LEP @ 3 On RCU Reconfigurations
- 0

fi outer loop, not hw-feasible
(=) . 1

£3 1

G;,D f4 1

£2,£3 6

£2,f4 >

f4 £3,f4 >
f()

£2,£3,f4 7

1 Next step
LPHG @ @ O Consider total performance

e Estimated speed-up by HW loops

@ @ e Slow-down by reconfigurations
O Relies on dynamic profiling

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003 18

Work in COMRADE

1 Nested loops are now valid

d Merge multiple kernels into a single configuration
O Significantly reduces number of reconfigurations

d Try to preload configurations

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003 19

Transformations

O Common sub-expression elimination
O Constant folding and propagation
O Dead code elimination

d Hardware relevant
O Function inlining *
e Specialization of constants (especially loop bounds)
O Loop transformations to expose parallelism
e Unrolling (increases RCU area requirements)
e Software pipelining (small to no RCU area growth)
d Hardware emphasis
O Bit-width reduction
O Unroll & squash *

O Embedding of external IP blocks
e Disguised as function calls

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

20

Function Inlining

for (n=0; n < 4; ++n) {
f(a, n);

} - for (n=0; n < 4; ++n) {
a[n] = 2*n;
f(char *p, inti) { s

pLi] = 2*i;
¥

A Function calls are HW infeasible
O Prevent HW execution of kernel
d Inlining inserts function code directly at call
O But calling block can become larger
d Questions
O What to inline?
O How deep a function hierarchy to inline?

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

21

Improving Inlining

d Experience from Garp CC

O Simple static rules allowing only inlining of leaf
functions insufficient

d Better approach
O Should be profiling directed
e Rely on dynamic call tree and execution time data
O Only inline at execution time hot-spots
O Hierarchical inlining for chain of simple functions
O Recognize “near-leaf” functions
e Handle rare cases in software

A Effects
O Larger number of kernels (=hardware area)
e One for each caller

O Opportunities for specialization by constant
propagation

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

22

Inlining Example

for (n=0; n<32; ++n) {

a[n] = f(n, 4); Inlining “near-leaf”
¥ procedures
int f(inti, intj) {
intk = 1; for (n = 0; n < 132; ++n) {
if (3 <0) intk = 1;
printf(“error”); if (4 < 0)’
fOI‘ (int I - 0; |<j-; ++|) printf(“error");
k*=1; for (int1=0; | < 4; ++)
return k; k *= n;

a[n] = k;
>

Dead code eliminated
Loop unrolling
Constant propagation
Copy propagation
Algebraic simplification

for(n=0;n< 32; ++n) {
>

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003 23

for (i=0; i<M; ++i) { for (i=0; i< M; i+=2) {
x = a[i]; x1 = a[i]; q=a[i+1];
p = f(x1);
N
g g| 2N-1
b[i] = x
¥ x1 = g(p

b[i] =q; b[i+1]=x1

by
d Here: Up to 2x performance with same HW area
O Clocks: 2 M Nvs. (M/2) (N*2) = MN
O by Petkov, idea: Leiserson’s c-slow execution

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

24

Work in COMRADE

a Profile-based inlining

d Combined loop transformations
O Software pipelining and unrolling
O Unroll&squash and unroll&jam
d Bit-width reduction for logical operators
A Exploit novel loop restructuring techniques

O Aimed specifically at hardware implementation
e Example: Aggressive Tail Splitting

d Automatic embedding of external IP blocks
O Interface wrapper generation

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

25

Controller

control signals to data path
A A * * A from conditional
in data path

A B

& 12 3—>4—D|5—>|_;1_ 6> 7

D

d Garp CC-created architecture
O N-hot controller (branching shift-register)
O Allows pipelining
O Fast and compact

d Limitations

O Allows only single thread of execution
¢ Memory stalls halt entire sequencer

O Assumes fixed (worst-case) schedule
Longest computation path determines decision

8™ 9

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003 26

Work in COMRADE

A Basic structure unchanged
[Supports fully dynamic schedules
O More data flow-like

d Short circuit evaluation

O After condition is valid, wait only for the actually
selected computation

d Cancel mis-speculated computation in progress
O Restart with next set of input values

d But: Much larger and more complex hardware
O Two nested loops, four conditionals: >50 flip-flops

d To do: Trade-off simple vs. complex controller
O Possibly complex controller only for innermost loops

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003 27

Dynamic Reconfiguration

A Exploitable by automatic compilers
O Plea to vendors: Just give us suitable devices
O ... but there seems to be hope ©

a Single-cycle reconfiguration not required
O Due to focus on longer running loops

d ... and seems to be rather wasteful

O 30%-50% expected area increase vs. 10’s of cycles
e John Hauser, architect of Garp

[But configuration caches are effective

O Mean cache miss rate over 13 real applications
e Compiled by Garp CC
e 1 plane: 35%, 4 planes: 4%, 8 planes: 1%
O Area efficient: 4 - 8 planes = +15% area (Hauser)
e On Garp: hit=10’s of cycles, miss=384 cycles
O Even better cache usage using improved management

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003 28

e
VLSI

Reconfiguration Strategies 1

A Established (Nimble via LEP+LPHG)
O One kernel per configuration
O Fully exploit available hardware area for realization
¢ Maximum parallelism and speculation

O Only feasible for
e Reasonably fast configuration switches (100’s of cycles)
e Or very few kernels actually selected for HW execution

d Under development (COMRADE, extended LEP+LPHG)
O Allow multiple kernels per configuration
O Compensate for glacial configuration speeds
e Suitable for current fine-grained devices (FPGASs)

O But trade-off becomes more complex

¢ Number of reconfigurations
vs. area per kernel (less parallelism and speculation)

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003 29

e
VLSI

Reconfiguration Strategies 2

d Future: Support for dynamic partial reconfiguration
O Multiple kernels resident on device
O Kernels can be individually loaded
O Profiling data used as hints for kernel pre-loads

O But mispredictions can be dynamically corrected
e All feasible kernels actually have HW realizations
e Compare with Nimble/COMRADE: Miss & SW execution

O Novel degree of support in physical design tools
e Estimate time to configure a specific function
e Estimate length of configuration data

e Both dependent on
e Complexity of function (hardware area)
e "Wildcarding” (configuration compression for regular circuits)

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003 30

Configuration Size

d Becomes problem with growing number of kernels
O Especially with fast reconfiguration

O More kernels can be configured onto hardware

O ... but now more configuration data has to be stored
» Problem especially for embedded systems

[Configuration size for XCV1000: 768KB
O 150-300x 32b operators+control+memory interface
O Even after LZO compression ~100KB per kernel
O Garp CC can find 147 HW-feasible kernels in GCC

[Alternatives
O Denser configurations
e Garp 32x 32b operators+control+mem.intf.: 6144 Bytes
O Usable partial reconfiguration

O “Wildcarding” to describe regular structures
e Replication of configuration data across a larger area

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003 31

Conclusion

[Overview of an ACS Compiler
O Hardware effects of traditional steps
O ACS-specific steps
O Large as-yet untapped performance potential

d Dynamic reconfiguration
O Automatically exploitable by compiler
O But currently no practically useful devices
O Problem of increasing configuration data size

=» More suitable device architectures sorely needed

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003 32

