
1

V L S I

Compilation for AdaptiveCompilation for Adaptive
ComputersComputers

Experiences and OpportunitiesExperiences and Opportunities

Andreas Koch
Tech. Univ. Braunschweig
Integrated Circuit Design Unit (E.I.S.)

2

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

OutlineOutline

oo High Level Language to Hardware compilationHigh Level Language to Hardware compilation

oo Target architecturesTarget architectures

oo Compiler processing stepsCompiler processing steps

oo Hardware generationHardware generation

oo Reconfiguration strategiesReconfiguration strategies

oo ConclusionConclusion

3

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

ACS CompilersACS Compilers
oo Experiences described based on work withExperiences described based on work with

m Adaptive Compilers
l Garp CC (Tim Callahan @ UC Berkeley)

l Targets Garp simulator

l Nimble (joint effort with Synopsys et al.)
l Targets ACE-II and ACE-V

m Platforms
l Garp (John Hauser @ UC Berkeley)

l Simulated, tightly couples MIPS-II core with RCU

l ACE-II (TSI-Telsys)
l Discrete, loosely couples microSPARC-IIep with 2x XC4085XL

l ACE-V (joint effort with Synopsys et al.)
l Discrete, loosely couples microSPARC-IIep with XCV1000

oo Outlook on COMRADEOutlook on COMRADE
m Compiler under development at E.I.S.

m Planned targets ACE-V and Xilinx ML300 (V2pro)
l ... but always looking for more suitable architectures

4

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

HLL CompilationHLL Compilation

oo High-level software programming languagesHigh-level software programming languages
m Few to no extra user annotations required

oo Here focus on imperative languagesHere focus on imperative languages
m Large user base: C

m Easier to implement: Fortran, subset of Java
l No pointers ...

oo Concentrate on implementing loopsConcentrate on implementing loops
m Require bulk of execution-time

oo Hardware-infeasible constructsHardware-infeasible constructs
m Often floating point, I/O, memory management

m Choices: skip loop or handle infrequent exceptions

m Here: exceptions handled by switch to SW

5

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

Target ArchitectureTarget Architecture

oo ProcessorProcessor
m Fixed Function

oo ExecutesExecutes
m Irregular sequences

l System management

m Hardware-infeasible ops

m Small part of computation
l Limited performance / power

oo ReconfigurableReconfigurable unit unit
m Variable function

oo ExecutesExecutes
m Regular sequences

m Bulk of computation
l Memory access

Shared
Memory

CPU RCU

6

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

RCU-CPU CouplingRCU-CPU Coupling

oo Tight (short latency communication)Tight (short latency communication)
m Frequent SW/HW switches affordable

l More exceptions can be tolerated in HW blocks

m Shorter blocks can be executed on HW

oo Loose (long latency communication)Loose (long latency communication)
m Fewer SW/HW switches affordable

m Blocks must be longer for efficient HW execution
l Amortize communication overhead over block run-time

Communications Latency

7

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

Shared MemoryShared Memory

oo Zero-copy data transfer between RCU and CPUZero-copy data transfer between RCU and CPU

oo Simplified memory managementSimplified memory management
m No “sram_malloc()” etc.

oo Homogeneous address spaceHomogeneous address space
m Pointers freely exchangeable between RCU and CPU

oo But: possibly cache coherency issuesBut: possibly cache coherency issues

oo Optionally: RCU-local memoryOptionally: RCU-local memory

Shared
Memory

8

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

Anatomy of an ACS CompilerAnatomy of an ACS Compiler

HW-Kernels as CDFG

Datapath Synthesis
• Scheduling
• Technology Mapping
• Module generation
• Floorplanning

Datapath Synthesis
• Scheduling
• Technology Mapping
• Module generation
• Floorplanning

Pre-placed Netlist

Module
Generator

Library

Front-End Compiler
• architecture-independent optimization
• profiling (commonly dynamic)
• analysis and visualization
• automatic HW/SW-partitioning
• configuration partitioning and scheduling

Front-End Compiler
• architecture-independent optimization
• profiling (commonly dynamic)
• analysis and visualization
• automatic HW/SW-partitioning
• configuration partitioning and scheduling

Architecture
Description

Place &
Route

Place &
Route

FPGA bit stream

Compiler & LinkerCompiler & Linker

SW-Part+Interfaces
as C Code

Runtime Lib.
OS / API

HW-Environment
„wrapper“

ACS
Hardware

ACS
Hardware

9

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

Analysis TechniquesAnalysis Techniques
oo Traditional techniques includeTraditional techniques include

m Control-flow analysis (recognize loops)

m Alias analysis (disambiguate pointers)

m Dynamic profiling (data set dependent)
l Path profiling (also finds block execution counts) *

l Performance profiling (block execution times)

oo High hardware relevanceHigh hardware relevance
m HW/SW-partitioning based on profiling data *

m Data dependency analysis in loops allows *
l Parallelization

l Scalarization

m Recognize potential use of HW memory streams

oo Reconfiguration EmphasisReconfiguration Emphasis
m Loop Entry Profiling *

m Loop-Procedure Hierarchy Graph *

10

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

Analysis for PartitioningAnalysis for Partitioning
oo Relies on pathRelies on path

profiling dataprofiling data
m Block and path

execution
counts

oo Find HW-Find HW-
infeasibleinfeasible
constructs (C)constructs (C)

m If infrequent,
handle via SW
exception

oo Find HW-Find HW-
inefficientinefficient
constructs (E)constructs (E)

m If infrequent,
prune and
handle in SW

A

B

D

E

F

C

100

80 20

100

10

100

A

B

D

FSW

SW

A B D E F 5
A C D E F 5
A B D F 75
A C D F 15

11

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

Analysis forAnalysis for Parallelization Parallelization

oo Data-dependence analysis for later Data-dependence analysis for later parallelizationparallelization

oo Dedicated hardware operatorsDedicated hardware operators
m Spatially distributed computation

for (n=0; n<32; ++n) {
 a[n] = n + 3;
 b[n] = n - 5;
}

n+3 n-5

n

a[n] b[n]

n+1

12

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

Analysis for Analysis for ScalarizationScalarization

oo Data-dependence analysis for laterData-dependence analysis for later scalarization scalarization
m Reduction of memory accesses

oo Very efficiently realizable in hardwareVery efficiently realizable in hardware
m Multi-tap shift-registers, primed in software

for (n=2; n<32; ++n) {
 a[n] = a[n-1] + a[n-2] + 1;
}

a[n]

t1+t2+1

n

n+1

t1

t2

13

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

Analysis for ReconfigurationAnalysis for Reconfiguration

oo Kernel: A loop or loop nestKernel: A loop or loop nest

m Smallest unit considered in partitioning

m Nimble limitation: Only inner loops

oo QuestionsQuestions

m Which kernels to actually put in HW?

m Which kernels to put in a configuration?
l Partial reconfiguration inefficient

l Applies to many current devices

m Nimble: Only 1 kernel per configuration

oo Naive approach: Put everything in HWNaive approach: Put everything in HW
m Even for fast (10’s of cycles) configuration

8Slowdown of 10x vs. selective approach

èèMinimize inter-kernel reconfigurationsMinimize inter-kernel reconfigurations

to reconfigure

static

static

Column-based
reconfiguration

14

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

Selective RCU UseSelective RCU Use

oo Approach in Nimble CompilerApproach in Nimble Compiler

m Li, Callahan, et al. (DAC2000)

m Can be generalized beyond Nimble limitations

oo Requires two kinds of analysisRequires two kinds of analysis

m Static (data-independent)
l Procedure call tree

l Loop nesting tree

m Dynamic (precision depends on quality of input data)
l Per-block execution time (from profiling)

l Iteration count for loops (- “ -)

l Loop execution entry sequence

15

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

Static AnalysisStatic Analysis

oo Loop Procedure Hierarchy Graph (LPHG)Loop Procedure Hierarchy Graph (LPHG)
m Calling structure of functions

m Nesting structure of loops

main()

d()b()a() c()

e() f() g()

e1 f1 f4

f2

b1 c1 d1

d2

f3

16

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

Dynamic AnalysisDynamic Analysis

oo Loop Entry ProfilingLoop Entry Profiling
m Determines temporal

order of loop entries
l But not iterations!

m Dynamic profiling,
quality dependent on
data set

e1

f1

f4

f2

b1

f3

Example:
e1 f1 f2 f3 f1 f2 f3 f1 f2 f3 f4 b1

3

17

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

Assign Kernels to RCUAssign Kernels to RCU

oo Problem:Problem:

Find program-wide best assignment of Find program-wide best assignment of nn
kernels to RCU, minimizing reconfigurationskernels to RCU, minimizing reconfigurations

oo Heuristic for tackling this O(2Heuristic for tackling this O(2nn) problem) problem
m Cluster all kernels in LPHG sharing predecessor

l Assumption: Clustered kernels compete for RCU, no
interference between different clusters

l Predecessor: Outer loop or enclosing function

l Limit cluster size (e.g., to 5), split larger clusters

m For all possible combinations of cluster contents
l Compute # of required reconfigurations from LEP

m Pick per-cluster optimum selection of HW kernels
l At least one HW-candidate kernel from each cluster

m Each of these kernels will become an RCU configuration

18

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

f1 f4

f2 f3

f1

f4

f2

f3

LEP

LPHG

On RCU Reconfigurations

- 0

f1 outer loop, not hw-feasible

f2 1

f3 1

f4 1

f2,f3 6

f2,f4 2

f3,f4 2

f2,f3,f4 7

3

Nimble ExampleNimble Example

oo Next stepNext step
m Consider total performance

l Estimated speed-up by HW loops

l Slow-down by reconfigurations

m Relies on dynamic profiling

f()

19

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

Work in COMRADEWork in COMRADE

oo Nested loops are now validNested loops are now valid

oo Merge multiple kernels into a single configurationMerge multiple kernels into a single configuration
m Significantly reduces number of reconfigurations

oo Try to Try to preloadpreload configurations configurations

20

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

TransformationsTransformations
oo TraditionalTraditional

m Common sub-expression elimination

m Constant folding and propagation

m Dead code elimination

oo Hardware relevantHardware relevant
m Function inlining *

l Specialization of constants (especially loop bounds)

m Loop transformations to expose parallelism
l Unrolling (increases RCU area requirements)

l Software pipelining (small to no RCU area growth)

oo Hardware emphasisHardware emphasis
m Bit-width reduction

m Unroll & squash *

m Embedding of external IP blocks
l Disguised as function calls

21

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

Function Function InliningInlining

oo Function calls are HW infeasibleFunction calls are HW infeasible
m Prevent HW execution of kernel

oo Inlining Inlining inserts function code directly at callinserts function code directly at call
m But calling block can become larger

oo QuestionsQuestions
m What to inline?

m How deep a function hierarchy to inline?

for (n=0; n < 4; ++n) {
f(a, n);

}

f(char *p, int i) {
p[i] = 2*i;

}

for (n=0; n < 4; ++n) {
a[n] = 2*n;

}

22

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

Improving Improving InliningInlining

oo Experience fromExperience from Garp Garp CC CC
m Simple static rules allowing only inlining of leaf

functions insufficient

oo Better approachBetter approach
m Should be profiling directed

l Rely on dynamic call tree and execution time data

m Only inline at execution time hot-spots

m Hierarchical inlining for chain of simple functions

m Recognize “near-leaf” functions
l Handle rare cases in software

oo EffectsEffects
m Larger number of kernels (=hardware area)

l One for each caller

m Opportunities for specialization by constant
propagation

23

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

InliningInlining Example Example

for (n=0; n<32; ++n) {
a[n] = f(n, 4);

}

int f(int i, int j) {
int k = 1;
if (j < 0)

printf(“error”);
for (int l = 0; l<j; ++l)

 k *= i;
return k;

}

for (n = 0; n < 132; ++n) {
int k = 1;
if (4 < 0)

printf(“error”);
for (int l = 0; l < 4; ++l)

k *= n;
a[n] = k;

}

Inlining “near-leaf”
procedures

for (n = 0; n < 32; ++n) {
a[n] = n*n*n*n;

}

Dead code eliminated
Loop unrolling
Constant propagation
Copy propagation
Algebraic simplification

n

+1

*

*

a[n]

24

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

Unroll & Squash in NimbleUnroll & Squash in Nimble

oo Here: Up to 2x performance with same HW areaHere: Up to 2x performance with same HW area
m Clocks: 2 M N vs. (M/2) (N*2) = M N

m by Petkov, idea: Leiserson’s c-slow execution

for (i=0; i<M; ++i) {
x = a[i];

b[i] = x
}

f

N

g

for (i=0; i < M; i+=2) {
x1 = a[i]; q=a[i+1];
p = f(x1);

x1 = g(p);
b[i] =q; b[i+1]=x1

}

fg 2N-1

p

q

25

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

Work in COMRADEWork in COMRADE

oo Profile-based Profile-based inlininginlining

oo Combined loop transformationsCombined loop transformations
m Software pipelining and unrolling

m Unroll&squash and unroll&jam

oo Bit-width reduction for logical operatorsBit-width reduction for logical operators

oo Exploit novel loop restructuring techniquesExploit novel loop restructuring techniques
m Aimed specifically at hardware implementation

l Example: Aggressive Tail Splitting

oo Automatic embedding of external IP blocksAutomatic embedding of external IP blocks
m Interface wrapper generation

26

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

ControllerController

oo GarpGarp CC-created architecture CC-created architecture
m N-hot controller (branching shift-register)

m Allows pipelining

m Fast and compact

oo LimitationsLimitations
m Allows only single thread of execution

l Memory stalls halt entire sequencer

m Assumes fixed (worst-case) schedule
l Longest computation path determines decision

o

from conditional
in data path

control signals to data path

Start

1 2 3 4 5 6 7

A B

&

8 9

&

27

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

Work in COMRADEWork in COMRADE

oo Basic structure unchangedBasic structure unchanged

oo Supports fully dynamic schedulesSupports fully dynamic schedules
m More data flow-like

oo Short circuit evaluationShort circuit evaluation
m After condition is valid, wait only for the actually

selected computation

oo CancelCancel mis mis-speculated computation in progress-speculated computation in progress
m Restart with next set of input values

oo But: Much larger and more complex hardwareBut: Much larger and more complex hardware
m Two nested loops, four conditionals: >50 flip-flops

oo To do: Trade-off simple To do: Trade-off simple vsvs. complex controller. complex controller
m Possibly complex controller only for innermost loops

28

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

Dynamic ReconfigurationDynamic Reconfiguration
oo Exploitable by automatic compilersExploitable by automatic compilers

m Plea to vendors: Just give us suitable devices

m ... but there seems to be hope ☺

oo Single-cycle reconfiguration not requiredSingle-cycle reconfiguration not required
m Due to focus on longer running loops

oo ... and seems to be rather wasteful... and seems to be rather wasteful
m 30%-50% expected area increase vs. 10’s of cycles

l John Hauser, architect of Garp

oo But configuration caches are effectiveBut configuration caches are effective
m Mean cache miss rate over 13 real applications

l Compiled by Garp CC

l 1 plane: 35%, 4 planes: 4%, 8 planes: 1%

m Area efficient: 4 è 8 planes = +15% area (Hauser)
l On Garp: hit=10’s of cycles, miss=384 cycles

m Even better cache usage using improved management

29

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

Reconfiguration Strategies 1Reconfiguration Strategies 1

oo Established (Nimble via LEP+LPHG)Established (Nimble via LEP+LPHG)
m One kernel per configuration

m Fully exploit available hardware area for realization
l Maximum parallelism and speculation

m Only feasible for
l Reasonably fast configuration switches (100’s of cycles)

l Or very few kernels actually selected for HW execution

oo Under development (COMRADE, extended LEP+LPHG)Under development (COMRADE, extended LEP+LPHG)
m Allow multiple kernels per configuration

m Compensate for glacial configuration speeds
l Suitable for current fine-grained devices (FPGAs)

m But trade-off becomes more complex
l Number of reconfigurations

vs. area per kernel (less parallelism and speculation)

30

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

Reconfiguration Strategies 2Reconfiguration Strategies 2

oo Future: Support for dynamic partial reconfigurationFuture: Support for dynamic partial reconfiguration
m Multiple kernels resident on device

m Kernels can be individually loaded

m Profiling data used as hints for kernel pre-loads

m But mispredictions can be dynamically corrected
l All feasible kernels actually have HW realizations

l Compare with Nimble/COMRADE: Miss è SW execution

m Novel degree of support in physical design tools
l Estimate time to configure a specific function

l Estimate length of configuration data

l Both dependent on
l Complexity of function (hardware area)

l “Wildcarding” (configuration compression for regular circuits)

31

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

Configuration SizeConfiguration Size
oo Becomes problem with growing number of kernelsBecomes problem with growing number of kernels

m Especially with fast reconfiguration

m More kernels can be configured onto hardware

m ... but now more configuration data has to be stored

è Problem especially for embedded systems

oo Configuration size for XCV1000: 768KBConfiguration size for XCV1000: 768KB
m 150-300x 32b operators+control+memory interface

m Even after LZO compression ~100KB per kernel

m Garp CC can find 147 HW-feasible kernels in GCC

oo AlternativesAlternatives
m Denser configurations

l Garp 32x 32b operators+control+mem.intf.: 6144 Bytes

m Usable partial reconfiguration

m “Wildcarding” to describe regular structures
l Replication of configuration data across a larger area

32

V L S I

Andreas Koch - TU Braunschweig (E.I.S.) - Dagstuhl 2003

ConclusionConclusion

oo Overview of an ACS CompilerOverview of an ACS Compiler
m Hardware effects of traditional steps

m ACS-specific steps

m Large as-yet untapped performance potential

oo Dynamic reconfigurationDynamic reconfiguration
m Automatically exploitable by compiler

m But currently no practically useful devices

m Problem of increasing configuration data size

èè More suitable device architectures sorely neededMore suitable device architectures sorely needed

