
MEMORY ACCESS PARALLELIZATION IN HIGH-LEVEL LANGUAGE COMPILATION
FOR RECONFIGURABLE ADAPTIVE COMPUTERS

Hagen G̈adke

Integrated Circuit Design (E.I.S.)
Technische Universität Braunschweig

email: gaedke@eis.cs.tu-bs.de

Florian Stock, Andreas Koch

Embedded Systems and Applications Group (ESA)
Technische Universität Darmstadt

email:{stock|koch}@esa.cs.tu-darmstadt.de

ABSTRACT
Control-memory-data flow graphs (CMDFGs) are a unified
intermediate representation for compiling high-level lan-
guages onto reconfigurable adaptive computing systems. We
present both their initial construction as well as transforma-
tions for parallel memory accesses. The impact on a num-
ber of applications is examined, also considering the effect
of caches on acceleration efficiency.

1. INTRODUCTION

A significant research effort has been made in academia and
industry to allow the programming of reconfigurableadap-
tive computing systems(ACS) from just a single high-level
language description without requiring specialised knowl-
edge from the software developer. One of these efforts is
COMRADE [11], a system that has been under steady de-
velopment since 2001. It aims at efficiently programming
an ACS from a C description, without imposing constraints
on the language features used or requiring additional source-
level annotations from the programmer. C is not treated as
a hardware-description language. Instead, the compiler at-
tempts to map thesemanticsof the source program to an
efficient combined hardware/software implementation.

In this paper, we focus on a recent enhancement to
COMRADE that deals with theparallel execution of mem-
ory accesses (MA). Our ACS prototypes have long had that
capability in hardware [12], however it is just being ex-
ploited by the compiler. The method presented here is ca-
pable of handling MAs via arbitrary pointers, and thus not
restricted to loops with constant bounds and affine index
variable updates, as many other approaches. We will also
show how the parallelization interacts with the speculative
execution and dynamic scheduling supported by our com-
pute model and microarchitecture.

2. RELATED WORK

Efforts to compile C into hardware attack the problem from
a variety of angles: Some attempt to treat the input program

as a hardware description with C syntax [9], others do at-
tempt to implement C semantics, but only support a subset
of the language [17] [16], e.g., supporting only pointers that
can be statically analysed at compile time.

Prior work on tools that attempt to compile ANSI stan-
dard C without restrictions include GarpCC [4] and Nimble
[15]. These tools had practical limitations with regard to the
supported C operators and only considered inner loops for
acceleration, while COMRADE allows even complex nested
structures. Their compute models are also different [13] and
they could not efficiently deal with variable-latency opera-
tors, a limitation which also extends to cached-memory ac-
cesses. A cache miss would result in the entire reconfig-
urable compute unit (RCU) being stalled. COMRADE uses
a significantly more powerful model that supports multiple
threads of execution, halting just those actually affectedby
the current delay.

Of the related approaches, the CASH compiler [1],[2]
with its Pegasus intermediate representation (IR) is the one
most similar to our work. While there are some obvious
differences (CASH targets asynchronous ASICs, not recon-
figurable devices), it also relies on token-based dynamic
scheduling. However, the model used in COMRADE not
only supports the activation of operators, but also the can-
cellation of misspeculated computations, even across ba-
sic block boundaries (important for nested control struc-
tures) [7]. MAs play an important role in both systems:
CASH explicitly models memory dependencies in its IR
and supports speculative writes and run-time disambigua-
tion using a load-store queue. Partial redundancy elimina-
tion is used to remove superfluous accesses. Orthogonal
to that work, COMRADE uses its IR, the control-memory-
data flow-graph (CMDFG), toparallelizeMAs while still
respecting access ordering constraints.

The COMRADE flow itself has been described in
greater detail in other work [11]. For the following discus-
sion, it suffices to know that it translates C programs into
CMDFGs, which are then optimised and transformed before
being exported for hardware realisation.



Fig. 1. Speculative execution of alternative branches of an
if: (a) source code, (b) CMDFG with initial ATs, flowing
downwards, until (c) the false branch gets cancelled. (d)
The correct result is passed through the mux.

3. CMDFG DYNAMIC BEHAVIOUR

As will be described in this section, CMDFGs are thestatic
compile-time representation ofdynamicbehaviour that will
at run-time be realised by the COmrade COntroller Mi-
croArchitecture (COCOMA). In COCOMA, multiple oper-
ators may be active simultaneously, leading to a Petri-net
like structure with multiple states marked by tokens. How-
ever, in addition to these Activate Tokens (ATs), that indicate
the presence of a result on an operator output, we also have
Cancel Tokens (CTs): If an AT and a CT meet in the same
state, they cancel each other out (and lead to the stopping of
the associated operator and/or the discarding of its already
computed result). In this fashion, a currently misspeculated
computation is terminated and the operators are made avail-
able for the next incoming data operands. Combinational
operators chained into the same clock cycle do not have as-
sociated COCOMA states. Instead, their tokens are stored
at their fan-in states, as one token for each sequential fan-
out of the operator chain. The fan-outs can be activated in
parallel. In hardware, each of the token places is realised as
a single-bit register, with combinational logic realisingthe
transition and token creation/deletion rules. Control inputs
include conditions and operator ready signals (this includes
cache hits); control outputs are operator start signals, multi-
plexer selects and clock-enables for data registers (to update
with the correct values). Despite its expressive power (e.g.,
self-timed dynamic data flow and speculative execution), the
hardware area requirements of the controller are quite mod-
est in practice [10].

For brevity and readability, the following description of

the run-time mechanisms is stated in prose instead of formal
equations. It should suffice, however, to clarify our han-
dling of parallel MAs later in this text. Fig. 1 shows the
token flow on a small example: ATs always travelforward
along data and control edges. Data edges (DE) model true
data dependencies. Control edges (CE) run from condition-
als (e.g.,if, switch, and loop conditions) to the data pre-
decessors of multiplexers. Only if all incoming DEs and
CEs of a CMDFG node (except multiplexor nodes) have
ATs at their source nodes, is a datum propagated through
the hardware operator (indicated by an accompanying AT
in the controller). For conditionals, only the true alternative
propagates its AT through the multiplexer. The false alterna-
tives generate a CT instead (as soon as the controlling condi-
tion has been evaluated, regardless of the availability of all
incoming data operands). This CT flowsbackwardsalong
the incoming DEs, cancelling already present data operands
for this computation of the false branch, or continuing up-
wards and cancelling the computation of the incoming data
operands (if they are not needed elsewhere). Thus, a CT can
propagate backwards through an operator only ifall outgo-
ing DEs of that operator have been cancelled. If the prop-
agation of a CT leads to the cancellation of a conditional,
the CT advancesforward along the CE of that conditional,
leading to the cancellation ofall of the alternatives (this can
occur, e.g., in a nestedif: once an outerif has been evaluated
to true, all computations in the innerif of the else branch
can be cancelled [7]). The propagation of a CT stops when
it hits an AT, erasing just this one set of computations and
freeing the operators for the next incoming data.

4. MEMORY ACCESSES

After establishing the context, we can now discuss
our current focus: The integration of MAs with the
CMDFG/COCOMA models. In the CMDFG, MAs are
also modelled as variable latency operators (due to possi-
ble cache misses). Array accesses are transparently split
into shift-add address calculations and the MA itself. COM-
RADE supports speculation across iteration boundaries,
overlapping address calculations with other computations
(somewhat similar to software pipelining).

On the hardware side, all MAs are handled by MARC
[12], a parametrised IP block providing both regular
streamed and irregular cached accesses on multiple ports.
However, since MARC does not support speculative writes
with store-to-load forwarding, all stores are executed non-
speculatively (have CEs from their associated conditionalin
the CMDFG). Loads may selectively be executed specula-
tively (see below). In addition to data and control depen-
dencies, MAs may also be interdependent. This is gener-
ally modelled as read-after-write, write-after-read and write-
after-write dependencies [8]. These are reflected as ded-



Fig. 2. (a) flow of AT forc == true, (b) flow of CTs forc ==
false

icated memory edges (ME) in the CMDFG, imposing an
ordering on MAs even in the presence of multiple parallel
memory ports. The efficient realisation of these edges in
and their interaction with the AT/CT-based control forms the
core of this work and will now be discussed in greater detail.

4.1. Memory Sequencing

The serialisation of MAs is realised using the established
AT-mechanism. The ATs can now also travel along MEs,
sequencing dependent accesses.

Unless speculation of loads is explicitly turned on by
the developer, MAs are executed non-speculatively (are the
destination of a CE). While we alreadycouldexecute loads
speculatively with MARC, doing so would reduce the effi-
ciency of our small cache (see Section 5).

CTs are handled differently for loads and stores (Fig.
2): For the latter, they are processed identically to normal
operators, and thus advance backwards along the store’s in-
coming DEs (address and write data). Combined with the
backward-moving CTs generated at mux inputs (for untaken
alternatives), they cancel load nodes by reaching them via
the load’s result edge. Note that CTs are generally held at
the token place associated with an operator’s result. Since
stores do not have a result, they are specially endowed with
a place to hold a CT incoming over a CE.

Loads arenot cancelled by the usual method of a CT
reaching them along a CE. While this would be desirable
(the load could be cancelled earlier, making the operator
available early for a new transaction), it would lead to a
problem when computing across loop iteration boundaries:

Fig. 3. Adding memory
dependencies to MAs
in the CMDFG; shown
as overlay edges in the
CFG

Fig. 4. Parallelizing sequen-
tial MAs A andB; numbers
indicate associated memory
port

when cancelling the load of a prior iteration early, the CTs
from thepreviousiteration, still moving upwards from stores
or muxes, would have no corresponding datum to erase (the
cancelled load never produced one). Thus, CEs ending in a
load will not be permitted to carry CTs, indicated by annCT
annotation.

MEs never transmit CTs: They connect memory opera-
tions in the same basic block and just sequence them in the
required order. The signal whether to execute them at all is
indicated by ATs incoming via CEs. If a basic block isnot
executed, contained stores are cancelled using CTs travel-
ling on CEs (for stores) or DEs (for loads), no token traffic
occurs on the MEs. Fig. 2 illustrates the flow of ATs/CTs
for the true and false cases of a conditional including MAs.

The CMDFG thus allows optimisation passes fine con-
trol over the realised hardware: By removing CEs ending
at memory operations, the degree of speculation can be in-
creased, while the removal or redirection of MEs between
MAs increases the parallelism of those accesses (see Sec-
tion 4.3).

4.2. Construction of CMDFG Memory Edges

As a baseline for further optimisations, we construct the
CMDFG in such a manner that all MAs are correctly se-
rialised in program order (Section 4.3 will introduce paral-
lelism). This initial construction of MEs is done by Algo-
rithm 1; the inserted edges are illustrated in the example in
Fig. 3.

Steps 2. . . 9 handle the case of conditionals which con-
tain MAs in only some of their branches: Those branches
with MAs use them to correctly forward ATs, but those with-
out break the dependence chain. Thus, we need to add mem-



Fig. 5. Inter-block memory flow (a) program code, (b)
CMDFG with MF and MD nodes

ory forwarders (MF) to all branches of a conditionalwithout
a real MA (Fig. 5). The MFs just forward incoming ATs,
keeping the dependence chains unbroken even without the
presence of actual memory operators. To achieve the AT-
only behaviour, we prevent CTs from passing to MFs by
qualifying their incoming CE with an nCT annote (Step 6).

Steps 11. . . 19 serialise MAs of different CFG blocks. A
memory disjunction (MD) joins the memory flow at CFG
join nodes (Step 11. . . 13) analogously to aΦ-node in SSA
data flow [5]. It passes a token as soon as one or more of its
inputs receive one. Memory statements (MS) can be MAs,
MFs, MDs, or MCs (to be introduced in Section 4.3). Thus,
Step 15 guarantees that MSs in a successor block are not ex-
ecuted before those of the current block have finished, Steps
16 and 18 connect inter-block memory flow using MEs and
MDs.

The rest of the algorithm handles nested loops. As other
operators in loops, MAs are also control-dependent [6] on
the loop condition. An example of this is shown in Fig.
6.a: The execution ofload2 and store3 is controlled by
c2, while the data-independentstore4 is controlled by the
conditionalc1.

In a loop nest, we must ensure that MAs in an outer loop
start only after the inner loop(s) havefinished, even if the
access itself is only control-dependent on the conditionalof
the outer loop and data independent of the inner loop. Fig.
6.b shows such a case:store4 can potentially execute be-
fore allstore3s in the inner loops have completed, resulting
in a write-after-write hazard. We resolve this by serialisa-
tion, inserting a CE from the conditional of the inner loop
to the store in the outer loop (Step 26 in Algorithm 1). For
non-memory operators, this would not be necessary, since
explicit data dependencies would ensure correct sequencing.
However, MAs may have hidden dependencies via memory
by accessing the same address (the classic memory disam-
biguation problem, which is unsolvable for the general case
in C). Thus, the controller must conservatively ensure the
serial execution of MAs between inner and outer loops.

Algorithm 1 Initial construction of MEs
Require: Each MA has CE to its controlling node

1: for all CFG blocksB do
2: for all Conditionals c at end of B having MA(s) in

branch(es)do
3: for all Branchesb of c do
4: if b has no MAthen
5: insert MF intob

6: connect controlling branch of MF to MF by nCT-CE
7: end if
8: end for
9: end for

10: Insert MEs between accesses in program order
11: if B is a join blockthen
12: create an MD node at its beginning
13: end if
14: if CFG blockB has condition at its endthen
15: {Bs successor is a join block}
16: Add ME from the block’s last MS to the conditional at the

end of the block
17: else
18: Add ME from the block’s last MS to the MD of the suc-

cessor block
19: end if
20: end for
21: for all loop header blocksl1 in CFGdo
22: for all MA m in l1 do
23: P :=reverse CFG-paths fromm’s block back tol1
24: if ∃ a pathp in P passing through a sub-loop headerthen
25: l2 := first occurring sub-loop header block inp
26: insert nCT-CE from conditional loop exit ofl2 to m

27: qualify the existing CE froml1 to m with nAT
28: end if
29: end for
30: end for

This approach of inserting CEs between MAs in differ-
ent loop nesting levels scales to arbitrary complexity. How-
ever, the handling of ATs and CTs instore4 has just become
ambiguous: Which of the two CEs now actually leads to the
creation of an AT or CT? Intuitively, the CE fromc2 should
cause an AT instore4 (since the inner loop is now finished),
while an unassertedc1 should send a CT (the outer loop is
finished or did not even start). To achieve this, we extend
our concept of qualifying CEs, as already introduced in Sec.
4.1: The CE (c2, store4) is qualified with annCT annote,
allowing passage only of ATs (Step 26), while the second
CE (c1, store4) is qualified analogously withnAT, propa-
gating only CTs (Step 27). Thus, the ambiguity is resolved.

4.3. Parallelizing Memory Accesses

The CMDFG constructed in this fashion is correct even for
complex nested control structures. However, it is overly
conservative with regard to the modeled dependencies since
it sequencesall MAs in program order.



Fig. 6. Nested loops: (a) CFG, (b) CMDFG before Steps
21. . . 30, (c) final CMDFG

This section will discuss how to transform the CMDFG
for more parallelism. Note that we will not describe how
that parallelism can actually bediscoveredin the program.
For that, numerous techniques ranging from simple rules
(e.g., consecutive loads and pointers qualified by there-
strict keyword are always independent, see Section 5 for
their evaluation) to complex analyses (e.g., pointer analysis
[20] [19] or loop-iteration space analysis [18] [14]) can be
employed. Also orthogonal is the reduction of the number
of MAs themselves (e.g., using scalarization [3]).

Algorithm 2 shows our approach. After removing MEs
between independent MAs discovered by one of the meth-
ods previously, it performs the transformation shown in Fig.
4. However, the parallel accesses now require different se-
mantics of the AT flow: In contrast to the behaviour of our
MD node (Sec. 4.2), MAs occurringafter the parallelized
part may now only activate whenall of the parallel MAs
have completed. Thus, we introduce a memory conjunction
(MC) node that propagates an AT only ifall of its prede-
cessors delivered ATs. In addition to this rerouting of the
AT flow, the algorithm now also binds accesses tospecific
ports of the memory system. Since MARC already provides
multi-port arbitration automatically in hardware, a simple
round-robin algorithm suffices for this task. If the num-
ber of MAs marked as independent in the CMDFG leads
to more parallelism than memory ports are available, the al-
gorithm re-serialises accesses again to keep below that limit.
To this end, MEs are inserted to force MAs into program or-
der. Should this lead to an ME fan-in> 1 at an MA, the
fan-in edges are combined into one ME by inserting an MC
inbetween (waiting for the completion ofall fan-in MAs be-
fore proceeding).

5. RESULTS

Given an application which performs MAs inM% of its
execution cycles, the maximum speed-up usingN memory

Algorithm 2 Parallelizing Greedy Algorithm
1: while exist two independent MAs connected by an ME(A, B)

do
2: remove edge(A, B)
3: for all memory predecessorsX of A do
4: add ME(X, B)
5: end for
6: for all memory successorsY of A do
7: add ME(A, Y )
8: end for
9: end while

10: for all MAs m do
11: if m has more than one incoming MEthen
12: combine these MEs with an MC node
13: assign available memory port numbers to sources of MEs

in a round-robin fashion
14: end if
15: end for

{remove conflicts by serialising}
16: for all CFG nodesc do
17: for all memory portsp do
18: if p used multiple times inc then
19: serialise all MAs usingp by inserting MEs between

them in program order
20: on ME fan-in> 1 at MA, insert MC between incoming

MEs and MA
21: end if
22: end for
23: end for

ports is 100

100−M+
M

N

(Amdahl’s Law).

We have examined four kernels1 and measured the ef-
ficiency of using parallel accesses. Table 1 shows both
system-level measurements using 4KB on-chip data cache,
as well as raw numbers not influenced by cache miss penal-
ties. The cache numbers reflect the MA locality charac-
teristics of the applications. For most cases, cache misses
dominate the execution time. The exception is thesu-
san principle kernel (from MiBench, performing an edge
detection on an input grayscale image), which operates here
on datasets of16 × 16 bytes and thus profits even from
our small cache. Applications with irregular access patterns
(such as thegfMultiply of pegwit, which performs elliptic
curve cryptography) would be better connected directly to
main memory using a technique such as FastLane [13].

A second limit for parallelization are the true dependen-
cies in these kernels. BothgfMultiply andsusan principle
perform some indirect accesses (the inner MA has to be per-
formed before the outer one). In a similar fashion,gfMul-
tiply has a non-removable WAR memory dependence, also
enforcing serialisation. Furthermore, we have parallelized
MAs here justwithin CFG blocks. If we would also take
control flow into account,susan principle could be paral-

1The final version of the paper will present more benchmarks.



Kernel Single Port Parallelized with 2 Ports
w/ D$ w/o D$ %Cycles w/ D$ Disregarding D$ miss penalty
Miss Miss w/ MAs Miss #Cycles Speedup Theor. max. % of max.

#Cycles #Cycles #Cycles Speedup Speedup achieved
memcopy 366 136 94.1 % 314 72 1.89 1.89 100 %
vec mult 178 52 92.3 % 143 28 1.86 1.86 100 %
susanprinciple 8995 8824 84.1 % 5494 5323 1.66 1.73 90.4 %
gfMultiply 1190 153 44.4 % 1173 136 1.13 1.29 44.8 %

Table 1. Run-time statistics for 1 and 2 memory ports: Execution times (both including and disregarding D$ misses), fraction
of execution spent on MAs, achieved speed-up, theoretical speed-up, and efficiency of parallelization

Kernel Data Path Controller Total
#Slices #FFs #LUTs #MULT #Slices #FFs #LUTs #Slices #FFs #LUTs #MULT

memcopy 2139 1985 1176 0 572 281 1077 2617 2270 2067 0
vec mult 1721 1633 984 12 492 245 929 2109 1885 1701 12
susanprinciple 6679 5154 3144 3 1710 998 3204 8448 6152 6262 3
gfMultiply 1523 1793 616 0 473 235 897 1908 2027 1282 0

Table 2. Area required on a Xilinx Virtex II Pro device

lelized to an even greater degree. Despite these limitations,
our techniques have achieved a large part of the theoretically
achievable speed-up for both the extreme case (memcopy
andvec mult are perfectly parallelizable) as well as for a
real-world non-scientific kernel (susan principle). Chip
area data for the kernels is given in Table 2.

6. CONCLUSION AND FUTURE WORK

CMDFGs are an expressive intermediate format for hard-
ware compilation that cannot only model the activation of
variable-latency operators, but also their explicit cancella-
tion, making them available for the next set of inputs.

We have shown how to formulate memory dependencies
in the CMDFGs and their interaction with control structures
such as nested conditionals and loops. As a first applica-
tion of representing data, control and memory flow in such
a unified representation, we proposed parallelizing memory
accesses. We demonstrated that we can achieve a large frac-
tion of the theoretically achievable speed-up both for syn-
thetic benchmarks as well as a real application.

Future work will extend to more tightly interweave
memory and control flow to allow inter-block paralleliza-
tion. We also plan a memory system supporting fully spec-
ulative accesses (even writes), which will further increase
parallelism.

7. REFERENCES

[1] M. Budiu. Spatial Computation. Ph.D. thesis, Carnegie Mellon Uni-
versity, Computer Science Department, 2003.

[2] M. Budiu and S. C. Goldstein. Optimizing memory accessesfor spa-
tial computation. InCGO, pages 216–227. 2003.

[3] D. Callahan, S. Carr et al. Improving register allocation for sub-
scripted variables.SIGPLAN, 25(6):53–65, 1990.

[4] T. Callahan, J. Hauser et al. The Garp Architecture and C Compiler.
Computer, 33(4):62–69, 2000.

[5] R. Cytron, J. Ferrante et al. Efficiently Computing Static Single
Assignment Form and the Control Dependence Graph.TOPLAS,
13(4):451–490, 1991.

[6] J. Ferrante, K. Ottenstein et al. The program dependencegraph and
its use in optimization.TOPLAS, 9(3):319–349, 1987.

[7] H. Gädke and A. Koch. Accelerating Speculative Execution in High-
Level Synthesis with Cancel Tokens. InARC. 2008.

[8] J. Hennessy and D. Patterson.Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., 2002.

[9] Impulse Accelerated Technologies, Inc. Impulse C -
http://www.impulsec.com.

[10] N. Kasprzyk. COMRADE – Ein Hochsprachen-Compiler für Adap-
tive Computersysteme. Ph.D. thesis, Technische Universität Braun-
schweig (Germany), 2005.

[11] N. Kasprzyk and A. Koch. High-Level-Language Compilation for
Reconfigurable Computers. InReCoSoC. 2005.

[12] H. Lange and A. Koch. Memory Access Schemes for Configurable
Processors. InFPL, pages 615–625. 2000.

[13] H. Lange and A. Koch. An Execution Model for Hardware/Software
Compilation and its System-Level Realization. InFPL. 2007.

[14] C. Lengauer. Loop Parallelization in the Polytope Model. In Intl.
Conf. on Concurrency Theory, pages 398–416. 1993.

[15] Y. Li, T. Callahan et al. Hardware-software co-design of embedded
reconfigurable architectures. InDAC, pages 507–512. 2000.

[16] Mitrionics. Mitrion-C - http://www.mitrionics.com.

[17] E. M. Panainte. The Molen Compiler for Reconfigurable Architec-
tures. Ph.D. thesis, Technical University Delft, 2007.

[18] W. Pugh. The Omega test: a fast and practical integer programming
algorithm for dependence analysis. InSupercomputing, pages 4–13.
1991.

[19] M. Shapiro and S. Horowitz. Fast and accurate flow-insensitive
points-to analysis. InPOPL, pages 1–14. 1997.

[20] B. Steensgaard. Points-to Analysis in Almost Linear Time. InPOPL,
pages 32–41. 1996.


