ILP-based Modulo

Scheduling for High-level
Synthesis

Julian Oppermann, Andreas Koch,
Melanie Reuter-Oppermann, Oliver Sinnen

THE UNIVERSITY OF

=y AUCKLAND

e Te Whare Wananga o Tamaki Makaurau
NEW ZEALAND

774 TECHNISCHE
&)=\ UNIVERSITAT
9> DARMSTADT

Karlsruhe Institute of Technology

= |ntroduction to loop pipelining / modulo scheduling

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 2 /24

= |ntroduction to loop pipelining / modulo scheduling

= Comparison of a novel & two existing approaches

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 2 /24

= |ntroduction to loop pipelining / modulo scheduling

= Comparison of a novel & two existing approaches

Modulo SDC

Canis et al.

state-of-the-art heuristic
J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 2 /24

= |ntroduction to loop pipelining / modulo scheduling

= Comparison of a novel & two existing approaches

Formulation by
Eichenberger &
Davidson

Modulo SDC

Canis et al.

state-of-the-art heuristic state-of-the-art exact formulation
J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 2 /24

= |ntroduction to loop pipelining / modulo scheduling

= Comparison of a novel & two existing approaches

Formulation by
Eichenberger &
Davidson

Modulo SDC Moovac

Oppermann et al.

Canis et al.

state-of-the-art heuristic state-of-the-art exact formulation novel exact formulation
J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 2 /24

= |ntroduction to loop pipelining / modulo scheduling

= Comparison of a novel & two existing approaches

» result quality, heuristic vs. exact

Formulation by
Eichenberger &
Davidson

Modulo SDC Moovac

Oppermann et al.

Canis et al.

state-of-the-art heuristic state-of-the-art exact formulation novel exact formulation
J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 2 /24

= |ntroduction to loop pipelining / modulo scheduling

= Comparison of a novel & two existing approaches
» result quality, heuristic vs. exact

- time to schedule - it’'s impractical to do exact
modulo scheduling, right?

Formulation by
Eichenberger &
Davidson

Modulo SDC Moovac

Oppermann et al.

Canis et al.

state-of-the-art heuristic state-of-the-art exact formulation novel exact formulation
J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 2 /24

Loop Pipelining

= C-based High-level Synthesis (HLS)
needs to exploit all sources of parallelism

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 3 /24

Loop Pipelining

= | l[ol0] } Initiation
§ S| Interval (1)
o, | |5[2] [<[0
c | |el3] |51
- - o c
= C-based High-level Synthesis (HLS) 221 1821, . .
. . ©
needs to exploit all sources of parallelism 8|3
=14

= Loop pipelining
= new loop iterations are started after a fixed
number of time steps, called Initiation Interval (ll)

- Partially overlapping execution of subsequent
loop iterations

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 3 /24

Loop Pipelining
(

ol 0 }Initiation
Schedule .S 1 Interval (1)
Length (SL)< &2 [~]9
= |Increases throughput! 53] [s[1
\ [T 4 =1 2| || O
8|31 |51
=14 '-E 2
0 3
=14
J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 4 /24

Loop Pipelining
(

ol0] } Initiation
Schedule S| Interval (I)
Length (SL)< g2 [~10
= |Increases throughput! HEIREE
\=14] |E[2] [0
. . . ¢/ 3| s
= Executing n iterations — =[4] |&[2] = =
n-SL time steps w/o pipelining S 2

(n-1) - I + SL time steps with pipelining

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 4 /24

Loop Pipelining
(

ol0] } Initiation
Schedule E 1 Interval (I)
Length (SL)< a2 |-
= |Increases throughput! HEIREE
\=14] |E[2] [0
. . . ¢/ 3| s
= Executing n iterations — =[4] |&[2] = =
n-SL time steps w/o pipelining S 2

(n-1) - I + SL time steps with pipelining
= Primary objective is to find smallest feasible Il

- Limited by dependencies between iterations

- Subject to resource constraints (cache ports,
DSPs, ...)

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 4 /24

Loop Pipelining

= Operations from different iterations

AN
C

are active at the same time =I\ =; 21 |
()

lteration 0
i_L o

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 5 /24

Loop Pipelining

0]
1
2
3
4

Iteration O

tion|1

= Operations from different iterations
are active at the same time

= Resource constraints have to hold for
congruence classes (modulo Il) of time steps

e “modulo resource constraints”

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 5 /24

Loop Pipelining

= Operations from different iterations
are active at the same time

Iteration O
IWINNE—=]|O
tion|1
N —=] O

N
lteration |2

NI NS

Iter

= Resource constraints have to hold for
congruence classes (modulo Il) of time steps

e “modulo resource constraints”

= Suitable schedules for loop pipelining are found
by modulo schedulers

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 5 /24

for (1 =1 N)
{
t = a[1-1];
ali] = s + t;
S =t * t;

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis

6 /24

for (1 =1 N)
{
t = a[1-1];
ali] = s + t;
S =t * t;

data flow implies precedence
constraints

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis

6 /24

Example

—h
O
3
M\
e
|
=
=
-/

} add operation depends on the value of s
from the previous iteration

e

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis

6 /24

} add operation depends on the value of s

from the previous iteration

e

_—

Load value only after it was

written in the previous iteration

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 6 /24

|

Example

for (1 =1 N)
i
t ‘_=_VC] ['I. - 1] ,
a[i] = s + t;
S =t * t;
} add operation depends on the value of s

from the previous iteration

s

Both edges imply
inter-iteration dependencies
a.k.a “backedges”

|

_—

Load value only after it was

written in the previous iteration

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 6 /24

Example

Time lteration O / lteration 1 lteration 2
{ step modulo schedule
— 1 . 1d
t S0 [1-1]; e
Cl[i: S + t; 1 N
S =t * t;
Kk st
3 2 ali] o
1d
a[i-1]
4 +
Kk st
S Cl['i.] E NN
T £ - | o V—d """
' 1d
’ ali-1]
0
; 7 +
0
' k st
’ 8 ali]
0

I

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 6 /24

General Approach

= Determine lower and upper bound for the Il

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 7 /24

General Approach

= Determine lower and upper bound for the Il

= Try to find a feasible modulo schedule

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 7 /24

General Approach

= Determine lower and upper bound for the |l
= Try to find a feasible modulo schedule

- Input: candidate |l, precedence edges, resource
constraints, operation latencies

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 7 /24

General Approach

= Determine lower and upper bound for the |l
= Try to find a feasible modulo schedule

- Input: candidate |l, precedence edges, resource
constraints, operation latencies

- QOutput: start times for operations, or attempt
fails

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 7 /24

General Approach

= Here: Compare schedulers based on
Integer Linear Programs (ILP)

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 8 /24

General Approach

= Here: Compare schedulers based on
Integer Linear Programs (ILP)

= Scheduling graphs with only typical HLS
precedence constraints and backedges is easy

- e.g. as a System of Difference Constraints (SDC),
special ILP that can be solved in polynomial
time

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 8 /24

General Approach

= Here: Compare schedulers based on
Integer Linear Programs (ILP)

= Scheduling graphs with only typical HLS
precedence constraints and backedges is easy

- e.g. as a System of Difference Constraints (SDC),
special ILP that can be solved in polynomial
time

= Approaches differ in the modelling of resource
constraints

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 8 /24

General Approach

s Ax iInstances/units/... of a
certain scarce resource kind k e

Resource instances

e
— TN

o1] 2| 3 Ay

Congruence
classes
A
N

\ [1-1

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 9 /24

General Approach

s Ax iInstances/units/... of a
certain scarce resource kind k

Resource instances

e
— TN

= Candidate Il = congruence 0 |12]38 | A

classes of operations’
start times

Congruence
classes
I
N

[

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 9 /24

General Approach

s Ax iInstances/units/... of a
certain scarce resource kind k

Resource instances

A
— O

= Candidate Il = congruence 0 |12]38 | A

|

classes of operations’
start times

Congruence
classes
I
N

= Each instance can be used
once per congruence class [
by an operation i

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 9 /24

General Approach

s Ax iInstances/units/... of a
certain scarce resource kind k

Resource instances

A
— O

= Candidate Il = congruence 0 |12]38 | A

|

classes of operations’
start times

Congruence
classes
A —

N

= Each instance can be used
once per congruence class [
by an operation i

= “modulo reservation table” (MRT)

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 9 /24

Modulo SDC

= Heuristic using an SDC and an explicit MRT

Modulo SDC

MRT SDC

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 10/24

Modulo SDC

= Heuristic using an SDC and an explicit MRT

- Start with a resource-unconstrained schedule

Modulo SDC

MRT SDC

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 10/24

Modulo SDC

= Heuristic using an SDC and an explicit MRT
- Start with a resource-unconstrained schedule

* Incrementally try to assign operations to MRT and add
constraints to SDC

Modulo SDC

MRT SDC

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 10/24

Modulo SDC

= Heuristic using an SDC and an explicit MRT
- Start with a resource-unconstrained schedule

* Incrementally try to assign operations to MRT and add
constraints to SDC

- Backtracking required if SDC becomes infeasible

Modulo SDC

MRT SDC

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 10/24

Modulo SDC

= Heuristic using an SDC and an explicit MRT

Start with a resource-unconstrained schedule

Incrementally try to assign operations to MRT and add
constraints to SDC

Backtracking required if SDC becomes infeasible

Successful if all resource-constrained ops fit in MRT

Modulo SDC

MRT SDC

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 10/24

Eichenberger’s Formulation

= Exact formulation
general ILP with time-indexed binary variables
am,i .= “operation / starts in congruence class m”

(9,0 i || 20, 95 N
()]
o a a,. || a a
S o 1,0 1,i 1,] 1,N
5
S
2 9 a a a a
5 8 2.0 o) 2] 2N
S ©
@)

\ 1,0 1| [, A1 N

Operations

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 11 /24

Eichenberger’s Formulation

= Exact formulation
general ILP with time-indexed binary variables
am,i .= “operation / starts in congruence class m”

= Example: Resource constraint for

Kind k, congruence class 2 [
. . 9,0 i || 20, AN
fulfilled iff.)
Q 210 A [31, A4 N
S @ < a a a a
= 2.0 2i || 2, ON
Zx as x < Ak E%:%
\ 1,0 1| [, A1 N

for all operations x that use
a k-resource

Operations

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 11 /24

= Moovac = Modulo Overlap Variable Constraints

= Adapted task scheduling formulation
based on overlap variables

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 12 /24

= Moovac = Modulo Overlap Variable Constraints

= Adapted task scheduling formulation
based on overlap variables

= Exact formulation, general ILP

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 12 /24

= Moovac = Modulo Overlap Variable Constraints

= Adapted task scheduling formulation
based on overlap variables

= Exact formulation, general ILP

= Integer variables model
start times t;

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 12 /24

Moovac

= Let/, j be operations that require a resource of kind k

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 13 /24

Moovac

= Let/, j be operations that require a resource of kind k
= Resource assignment modelled by

* Integer variables
ri resource instance ID € [0 ... Ax- 1]

m; congruence class ID € [0 ... candidate Il - 1]

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 13 /24

Moovac

= Let/, j be operations that require a resource of kind k
= Resource assignment modelled by

* Integer variables
ri resource instance ID € [0 ... Ax- 1]

m; congruence class ID € [0 ... candidate Il - 1]

- Binary overlap variables
g =1 1Iff. rn <
ui =1 Iff. mi < m,

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 13 /24

Moovac

= Let/, j be operations that require a resource of kind k
= Resource assignment modelled by

* Integer variables
ri resource instance ID € [0 ... Ax- 1]

m; congruence class ID € [0 ... candidate Il - 1]

- Binary overlap variables
g =1 1Iff. rn <
ui =1 Iff. mi < m,

“/ and J are either assigned
to different resource instances,
or scheduled to different
congruence classes”

= No resource conflict Iff.
Eij+ i+ Uj+ Hji= 1

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 13 /24

= Tuples (mj, r) = cell in MRT for operation i

Resource instances

A
°
@

——

Congruence
classes
A

@

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 14 /24

= Tuples (mj, r) = cell in MRT for operation i
= Qverlap variables model relations between operations

Resource instances

A
°
@

—

Congruence
classes
A

\

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 14 /24

= Tuples (mj, r) = cell in MRT for operation i
= Qverlap variables model relations between operations

Resource instances

A
°
L

—

—
=
C
<
|
~d

)

Congruence
classes
A

\

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 14 /24

= Tuples (mj, r) = cell in MRT for operation i

= Qverlap variables model relations between operations

|
-

Resource instances Euw

A
— — IJUW
|

|
-

—
=
C
<
|
~d

)

Congruence
classes
A

\

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 14 /24

= Tuples (mj, r) = cell in MRT for operation i

= Qverlap variables model relations between operations

|
-

Resource instances Euw

O Huw

A
°
L

|
-

—
=
C
<
|
~d

)

Congruence
classes
A

\

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 14 /24

Approaches At A Glance

= Resource constraints are not part of the
Modulo SDC linear program

Canis et al. = Operations are assigned heuristically to
MRT

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 15 /24

Approaches At A Glance

Resource constraints are not part of the

Modulo SDC linear program
Canis et al. = Operations are assigned heuristically to
MRT
Formulation by = Exact formulation
Eichenberger & = Time-indexing — large number of binary
Davidson variables, complicated constraints

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 15 /24

Approaches At A Glance

Resource constraints are not part of the

Modulo SDC linear program
Canis et al. = Operations are assigned heuristically to
MRT
Formulation by = Exact formulation
E|chen!oerger & = Time-indexing — large number of binary
Davidson variables, complicated constraints

= Novel exact formulation

Moovac = Uses fewer integer variables and overlap
Oppermann et al. variables to model inequality between
them

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 15 /24

Evaluation

= Schedulers implemented with CPLEX 12.6.3

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 16 /24

Evaluation

= Schedulers implemented with CPLEX 12.6.3

= Single-threaded execution on Intel Xeon E5-2667’s at
3.3 GHz

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 16 /24

Evaluation

= Schedulers implemented with CPLEX 12.6.3

= Single-threaded execution on Intel Xeon E5-2667’s at
3.3 GHz

= Time limit of 5 min or 60 min per candidate Il

* Increment Il if no solution was found

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 16 /24

Evaluation

= Schedulers implemented with CPLEX 12.6.3

= Single-threaded execution on Intel Xeon E5-2667’s at
3.3 GHz

= Time limit of 5 min or 60 min per candidate Il
- increment |l if no solution was found

= Attempted to schedule 225 graphs from CHStone and
MachSuite

- up to 1124 operations /
up to 107 resource-constrained operations

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 16 /24

Results (Quality)

= 5 min time limit

Graphs Moovac vs. Modulo SDC Moovac vs. Eichenberger’s ILP
| shorter Il found by ... shorter Il found by ...

Size # Moovac Same M. SDC | Moovac Same E.B.’s
@l 25| 6 o217 2 | 6 219 . 0
________ small 203| 1 202 0 | O 28 0

arge | 22 5 15 2 6 16 0

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis

17 /24

Results (Quality)

= 5 min time limit

Graphs Moovac vs. Modulo SDC Moovac vs. Eichenberger’s ILP
| shorter Il found by ... shorter Il found by ...
Size # Moovac Same = M. SDC | Moovac Same E.B.’s
al 25| 6 217 2 | 6 219 . 0
’ 1 4202 0 | R 203 0
6 16 0

Modulo SDC delivers
high-quality results

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis

17 /24

Results (Quality)

= 5 min time limit

Graphs Moovac vs. Modulo SDC Moovac vs. Eichenberger’s ILP
| shorter Il found by ... shorter Il found by ...

Size # Moovac Same M. SDC | Moovac Same E.B.’s
@l 25| 6 217 2 | 6 219 . 0
small 203 | 1 202 0 | 0 . 208 . 0

15 2 6 16 0

Modulo SDC delivers
high-quality results

Modulo SDC found
schedules where Moovac
ran out of time

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 17 /24

Results (Quality)

= 5 min time limit

Graphs Moovac vs. Modulo SDC Moovac vs. Eichenberger’s ILP
| shorter Il found by ... shorter Il found by ...

Size # Moovac Same M. SDC Moovac§ Same E.B.’s
@l 25| 6 217 2 | 6 219 . 0
small 203 | 1 202 0 | 0 . 208 . 0

15 2 6

Modulo SDC delivers
high-quality results Exact schedulers

should find same I,
Modulo SDC found but E.B. hit time limit
schedules where Moovac

ran out of time

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 17 /24

Results (Time)

= Scheduling duration with 5 min time limit:

Graphs Moovac Modulo SDC Eichenberger’s ILP
Size | # |Time [min]é Timeouts| Time [min] Timeouts| Time [min] Timeouts
@l 25| 489 96 | 753 148 | 932 177
________ small 208)| 8 .0 A8l 26 SO
large 22 486 96 623 122 927 177
J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 18 /24

Results (Time)

= Scheduling duration with 5 min time limit:

Graphs Moovac Modulo SDC Eichenberger’s ILP
Size # |Time [min]é Timeouts| Time [min] ETimeouts Time [min] ETimeouts
@l 25| 489 96 | 753 148 | 932 . 177
small . 203 | / 3 ..o .. 131 26 | 5 .0

5 486 | 96 623 | 122 927 177

Moovac is faster than
the other approaches

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 18 /24

Results (Time)

= Scheduling duration with 5 min time limit:

Graphs Moovac Modulo SDC Eichenberger’s ILP
Size i # |Time [min]: Timeouts| Time [min] : Timeouts| Time [min] | Timeouts

all i 225 489 | 96 753 i 148 932 177

Moovac is faster than

the other approaches

The timeouts
dominate the overall time
e.g. 96 x 5 min = 480 min

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 18 /24

Results (Time)

= Scheduling duration with 5 min time limit:

Graphs Moovac Modulo SDC Eichenberger’s ILP
Size i # |Time [min]: Timeouts| Time [min] : Timeouts| Time [min] | Timeouts

all i 225 489 | 96 753 i 148 932 177

Moovac is faster than
the other approaches

M. SDC seems to get stuck
even on small graphs

The timeouts
dominate the overall time
e.g. 96 x 5 min = 480 min

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 18 /24

= How can an exact formulation be faster overall than
the heuristic?

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 19 /24

= How can an exact formulation be faster overall than
the heuristic?

* |LP solver “sees” whole problem, can prove
infeasibility of scheduling attempt (often: fast)

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 19 /24

= How can an exact formulation be faster overall than
the heuristic?

* |LP solver “sees” whole problem, can prove
infeasibility of scheduling attempt (often: fast)

- Heuristic can only fail to find a solution in the
given time budget

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 19 /24

= Modulo SDC and Moovac complement each other

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 20 /24

= Modulo SDC and Moovac complement each other
= “Synergistic scheduling”

Moovac: 489 min
Modulo SDC: 753 min
Combined: 429 min

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 20 /24

= \What makes Moovac better suited for HLS modulo
scheduling than Eichenberger’s ILP?

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 21 /24

= \What makes Moovac better suited for HLS modulo
scheduling than Eichenberger’s ILP?

- Up to 1000+ operations, candidate lls > 50
require humongous amounts of decision
variables in time-indexed formulation

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 21 /24

= \What makes Moovac better suited for HLS modulo
scheduling than Eichenberger’s ILP?

- Up to 1000+ operations, candidate lls > 50
require humongous amounts of decision
variables in time-indexed formulation

- Majority of ops is unconstrained, only subject to
precedence constraints and exempt from all MF
handling in Moovac

T

gl b

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 21 /24

= Smarter search through the (rather large) |l space

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 22 /24

Outlook

= Smarter search through the (rather large) |l space

120
* Observation: g
s 80 Infeasible lls Smgllest
5 feasible Il
3
S 40
()
£
|_
0

12 13 14 15 16 17 18 19 20
Candidate Il

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 22 /24

Outlook

= Smarter search through the (rather large) |l space

120

» Observation: g

_ § 80 Infeasible lls figns?tl)lleesfl

« Maxll = Minll 2 3
S 40

)

£

|_
0

12 13 14 15 16 17 18 19 20
Candidate Il

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 22 /24

= Smarter search through the (rather large) |l space

120
- Observation: g
.§ 80 Infeasible lls Smgllest
+ Maxll = Minll 2 3 IGESBIE
2 40
)
- Binary search ? F
0

12 13 14 15 16 17 18 19 20
Candidate Il

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 22 /24

= Smarter search through the (rather large) |l space

120
- Observation: g
.§ 80 Infeasible lls Smgllest
+ Maxll = Minll ? 3 ISASBIE
2 40
)
- Binary search ? F
0

12 13 14 15 16 17 18 19 20
Candidate Il

= |[ntegrate |l search into the Moovac formulation

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 22 /24

= Smarter search through the (rather large) |l space

120
* Observation:

SINEER
feasible Il

00)
o

Infeasible llIs

- Maxll = Minll ?

Time to solution [sec]
AN
o

- Binary search ?

12 13 14 15 16 17 18 19 20
Candidate Il

= |[ntegrate |l search into the Moovac formulation

- Time-indexed formulations:
decision variables dependent on candidate |l

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 22 /24

Conclusion

= Loop pipelining can reasonably be applied to wide
range of HLS loops

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 23 /24

Conclusion

= Loop pipelining can reasonably be applied to wide
range of HLS loops

= The Modulo SDC heuristic delivers results on a par
with exact formulations

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 23 /24

Conclusion

= Loop pipelining can reasonably be applied to wide
range of HLS loops

= The Modulo SDC heuristic delivers results on a par
with exact formulations

= The novel, exact Moovac formulation is surprisingly
practical in its time-limited mode

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 23 /24

Conclusion

= Loop pipelining can reasonably be applied to wide
range of HLS loops

= The Modulo SDC heuristic delivers results on a par
with exact formulations

= The novel, exact Moovac formulation is surprisingly
practical in its time-limited mode

= Diverse options to reduce the scheduling time even
further exist

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 23 /24

Thank youl

oppermann@esa.tu-darmstadt.de

THE UNIVERSITY OF

AUCKLAND

Te Whare Wananga o Tamaki Makaurau
NEW ZEALAND

T/
o

TECHNISCHE
UNIVERSITAT
DARMSTADT

Karlsruhe Institute of Technology

