
ILP-based Modulo
Scheduling for High-level

Synthesis
Julian Oppermann, Andreas Koch, 

Melanie Reuter-Oppermann, Oliver Sinnen

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Outline
■ Introduction to loop pipelining / modulo scheduling

2

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Outline
■ Introduction to loop pipelining / modulo scheduling

■ Comparison of a novel & two existing approaches

2

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Outline
■ Introduction to loop pipelining / modulo scheduling

■ Comparison of a novel & two existing approaches

2

Modulo SDC
Canis et al.

state-of-the-art heuristic

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Outline
■ Introduction to loop pipelining / modulo scheduling

■ Comparison of a novel & two existing approaches

2

Modulo SDC
Canis et al.

Formulation by

Eichenberger &

Davidson

state-of-the-art heuristic state-of-the-art exact formulation

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Outline
■ Introduction to loop pipelining / modulo scheduling

■ Comparison of a novel & two existing approaches

2

Modulo SDC
Canis et al.

Formulation by

Eichenberger &

Davidson

Moovac
Oppermann et al.

state-of-the-art heuristic novel exact formulationstate-of-the-art exact formulation

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Outline
■ Introduction to loop pipelining / modulo scheduling

■ Comparison of a novel & two existing approaches

• result quality, heuristic vs. exact

2

Modulo SDC
Canis et al.

Formulation by

Eichenberger &

Davidson

Moovac
Oppermann et al.

state-of-the-art heuristic novel exact formulationstate-of-the-art exact formulation

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Outline
■ Introduction to loop pipelining / modulo scheduling

■ Comparison of a novel & two existing approaches

• result quality, heuristic vs. exact

• time to schedule - it’s impractical to do exact
modulo scheduling, right?

2

Modulo SDC
Canis et al.

Formulation by

Eichenberger &

Davidson

Moovac
Oppermann et al.

state-of-the-art heuristic novel exact formulationstate-of-the-art exact formulation

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Loop Pipelining

3

■ C-based High-level Synthesis (HLS) 
needs to exploit all sources of parallelism

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Loop Pipelining

3
Ite

ra
tio

n
0

0
1
2
3
4

Initiation
Interval (II)

…Ite
ra

tio
n

1

0
1
2
3
4

Ite
ra

tio
n

2

0
1
2
3
4

tim
e

[s
te

ps
]

■ C-based High-level Synthesis (HLS) 
needs to exploit all sources of parallelism

■ Loop pipelining 
= new loop iterations are started after a fixed
number of time steps, called Initiation Interval (II)

• Partially overlapping execution of subsequent
loop iterations

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24
Ite

ra
tio

n
0

0
1
2
3
4

Initiation
Interval (II)

…

Schedule
Length (SL)

Ite
ra

tio
n

1

0
1
2
3
4

Ite
ra

tio
n

2

0
1
2
3
4

Loop Pipelining

■ Increases throughput!

4

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24
Ite

ra
tio

n
0

0
1
2
3
4

Initiation
Interval (II)

…

Schedule
Length (SL)

Ite
ra

tio
n

1

0
1
2
3
4

Ite
ra

tio
n

2

0
1
2
3
4

Loop Pipelining

■ Increases throughput!

■ Executing n iterations → 
 n · SL 	 	 	 	 time steps w/o pipelining 
 (n-1) · II + SL		 time steps with pipelining

4

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24
Ite

ra
tio

n
0

0
1
2
3
4

Initiation
Interval (II)

…

Schedule
Length (SL)

Ite
ra

tio
n

1

0
1
2
3
4

Ite
ra

tio
n

2

0
1
2
3
4

Loop Pipelining

■ Increases throughput!

■ Executing n iterations → 
 n · SL 	 	 	 	 time steps w/o pipelining 
 (n-1) · II + SL		 time steps with pipelining

■ Primary objective is to find smallest feasible II

• Limited by dependencies between iterations

• Subject to resource constraints (cache ports,
DSPs, …)

4

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24
Ite

ra
tio

n
0

0
1
2
3
4

Initiation
Interval (II)

…

Schedule
Length (SL)

Ite
ra

tio
n

1

0
1
2
3
4

Ite
ra

tio
n

2

0
1
2
3
4

Loop Pipelining

5

■ Operations from different iterations 
are active at the same time

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24
Ite

ra
tio

n
0

0
1
2
3
4

Initiation
Interval (II)

…

Schedule
Length (SL)

Ite
ra

tio
n

1

0
1
2
3
4

Ite
ra

tio
n

2

0
1
2
3
4

Loop Pipelining

5

■ Operations from different iterations 
are active at the same time

■ Resource constraints have to hold for
congruence classes (modulo II) of time steps

• “modulo resource constraints”

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24
Ite

ra
tio

n
0

0
1
2
3
4

Initiation
Interval (II)

…

Schedule
Length (SL)

Ite
ra

tio
n

1

0
1
2
3
4

Ite
ra

tio
n

2

0
1
2
3
4

Loop Pipelining

5

■ Operations from different iterations 
are active at the same time

■ Resource constraints have to hold for
congruence classes (modulo II) of time steps

• “modulo resource constraints”

■ Suitable schedules for loop pipelining are found
by modulo schedulers

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Example

6

for (i = 1 .. N)
{
 t = a[i-1];
 a[i] = s + t;
 s = t * t;
}

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

ld a[i-1]

add mul

st a[i]

Example

6

for (i = 1 .. N)
{
 t = a[i-1];
 a[i] = s + t;
 s = t * t;
}

data flow implies precedence
constraints

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

ld a[i-1]

add mul

st a[i]

Example

6

for (i = 1 .. N)
{
 t = a[i-1];
 a[i] = s + t;
 s = t * t;
}

ld a[i-1]

add mul

st a[i]

add operation depends on the value of s
from the previous iteration

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

ld a[i-1]

add mul

st a[i]

Example

6

for (i = 1 .. N)
{
 t = a[i-1];
 a[i] = s + t;
 s = t * t;
}

ld a[i-1]

add mul

st a[i]

add operation depends on the value of s
from the previous iteration

Load value only after it was
written in the previous iteration

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

ld a[i-1]

add mul

st a[i]

Example

6

for (i = 1 .. N)
{
 t = a[i-1];
 a[i] = s + t;
 s = t * t;
}

ld a[i-1]

add mul

st a[i]

add operation depends on the value of s
from the previous iteration

Load value only after it was
written in the previous iteration

Both edges imply 
inter-iteration dependencies

a.k.a “backedges”

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

ld a[i-1]

add mul

st a[i]

Example

6

for (i = 1 .. N)
{
 t = a[i-1];
 a[i] = s + t;
 s = t * t;
}

ld a[i-1]

add mul

st a[i]

0

1

2

3

4

5

6

7

8

9

Iteration 0 /
modulo schedule

Iteration 1 Iteration 2

…

Time
step

ld
a[i-1]

st
a[i]*
+

ld
a[i-1]

st
a[i]*
+

ld
a[i-1]

st
a[i]*
+

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

General Approach

■ Determine lower and upper bound for the II

7

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

General Approach

■ Determine lower and upper bound for the II

■ Try to find a feasible modulo schedule

7

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

General Approach

■ Determine lower and upper bound for the II

■ Try to find a feasible modulo schedule

• Input: candidate II, precedence edges, resource
constraints, operation latencies

7

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

General Approach

■ Determine lower and upper bound for the II

■ Try to find a feasible modulo schedule

• Input: candidate II, precedence edges, resource
constraints, operation latencies

• Output: start times for operations, or attempt
fails

7

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

General Approach

■ Here: Compare schedulers based on 
Integer Linear Programs (ILP)

8

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

General Approach

■ Here: Compare schedulers based on 
Integer Linear Programs (ILP)

■ Scheduling graphs with only typical HLS
precedence constraints and backedges is easy

• e.g. as a System of Difference Constraints (SDC), 
special ILP that can be solved in polynomial
time

8

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

General Approach

■ Here: Compare schedulers based on 
Integer Linear Programs (ILP)

■ Scheduling graphs with only typical HLS
precedence constraints and backedges is easy

• e.g. as a System of Difference Constraints (SDC), 
special ILP that can be solved in polynomial
time

■ Approaches differ in the modelling of resource
constraints

8

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

0 1 2 3 Ak-1

0

1

2

II-1

C
on

gr
ue

nc
e

cl
as

se
s

Resource instances

General Approach

■ Ak instances/units/… of a 
certain scarce resource kind k

9

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

0 1 2 3 Ak-1

0

1

2

II-1

C
on

gr
ue

nc
e

cl
as

se
s

Resource instances

General Approach

■ Ak instances/units/… of a 
certain scarce resource kind k

■ Candidate II ⇒ congruence  
classes of operations’ 
start times

9

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

0 1 2 3 Ak-1

0

1

2

II-1

C
on

gr
ue

nc
e

cl
as

se
s

Resource instances

i

General Approach

■ Ak instances/units/… of a 
certain scarce resource kind k

■ Candidate II ⇒ congruence  
classes of operations’ 
start times

■ Each instance can be used 
once per congruence class 
by an operation i

9

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

0 1 2 3 Ak-1

0

1

2

II-1

C
on

gr
ue

nc
e

cl
as

se
s

Resource instances

i

General Approach

■ Ak instances/units/… of a 
certain scarce resource kind k

■ Candidate II ⇒ congruence  
classes of operations’ 
start times

■ Each instance can be used 
once per congruence class 
by an operation i

■ “modulo reservation table” (MRT)

9

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Modulo SDC
■ Heuristic using an SDC and an explicit MRT

10

min …
s.t.
 vj - vi ≤ 1
 …

MRT SDC

Modulo SDCi

j
h

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Modulo SDC
■ Heuristic using an SDC and an explicit MRT

• Start with a resource-unconstrained schedule

10

min …
s.t.
 vj - vi ≤ 1
 …

MRT SDC

Modulo SDCi

j
h

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Modulo SDC
■ Heuristic using an SDC and an explicit MRT

• Start with a resource-unconstrained schedule

• Incrementally try to assign operations to MRT and add
constraints to SDC

10

min …
s.t.
 vj - vi ≤ 1
 …

MRT SDC

Modulo SDCi

j
h

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Modulo SDC
■ Heuristic using an SDC and an explicit MRT

• Start with a resource-unconstrained schedule

• Incrementally try to assign operations to MRT and add
constraints to SDC

• Backtracking required if SDC becomes infeasible

10

min …
s.t.
 vj - vi ≤ 1
 …

MRT SDC

Modulo SDCi

j
h

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Modulo SDC
■ Heuristic using an SDC and an explicit MRT

• Start with a resource-unconstrained schedule

• Incrementally try to assign operations to MRT and add
constraints to SDC

• Backtracking required if SDC becomes infeasible

• Successful if all resource-constrained ops fit in MRT

10

min …
s.t.
 vj - vi ≤ 1
 …

MRT SDC

Modulo SDCi

j
h

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

a0,i

a1,i

aII-1,i

Co
ng

ru
en

ce
cl
as

se
s

i

a0,j

a1,j

aII-1,j

j

Operations

a0,0

a1,0

0

a0,N

a1,N

N

aII-1,0

a2,i a2,j a2,N

aII-1,N

a2,0

Eichenberger’s Formulation

■ Exact formulation 
general ILP with time-indexed binary variables 
am,i := “operation i starts in congruence class m”

11

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

a0,i

a1,i

aII-1,i

Co
ng

ru
en

ce
cl
as

se
s

i

a0,j

a1,j

aII-1,j

j

Operations

a0,0

a1,0

0

a0,N

a1,N

N

aII-1,0

a2,i a2,j a2,N

aII-1,N

a2,0

Eichenberger’s Formulation

■ Exact formulation 
general ILP with time-indexed binary variables 
am,i := “operation i starts in congruence class m”

■ Example: Resource constraint for 
	kind k, congruence class 2 
fulfilled iff. 
 
	∑x a2,x ≤ Ak 
 
for all operations x that use 
a k-resource

11

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Moovac

■ Moovac = Modulo Overlap Variable Constraints

■ Adapted task scheduling formulation 
based on overlap variables

12

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Moovac

■ Moovac = Modulo Overlap Variable Constraints

■ Adapted task scheduling formulation 
based on overlap variables

■ Exact formulation, general ILP

12

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Moovac

■ Moovac = Modulo Overlap Variable Constraints

■ Adapted task scheduling formulation 
based on overlap variables

■ Exact formulation, general ILP

■ Integer variables model 
start times ti

12

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Moovac
■ Let i, j be operations that require a resource of kind k

13

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Moovac
■ Let i, j be operations that require a resource of kind k

■ Resource assignment modelled by

• Integer variables 
ri		 resource instance ID ∈ [0 … Ak - 1] 
mi	 congruence class ID ∈ [0 … candidate II - 1]

13

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Moovac
■ Let i, j be operations that require a resource of kind k

■ Resource assignment modelled by

• Integer variables 
ri		 resource instance ID ∈ [0 … Ak - 1] 
mi	 congruence class ID ∈ [0 … candidate II - 1]

• Binary overlap variables 
εij	 :=	 1	 iff.		 ri 	 <	 rj  
μij	 :=	 1	 iff.		 mi	<	 mj

13

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Moovac
■ Let i, j be operations that require a resource of kind k

■ Resource assignment modelled by

• Integer variables 
ri		 resource instance ID ∈ [0 … Ak - 1] 
mi	 congruence class ID ∈ [0 … candidate II - 1]

• Binary overlap variables 
εij	 :=	 1	 iff.		 ri 	 <	 rj  
μij	 :=	 1	 iff.		 mi	<	 mj

■ No resource conflict iff. 
	 	 	 	 	 εij + εji	+	 μij + μji	≥	1

13

“i and j are either assigned
to different resource instances, 

or scheduled to different
congruence classes”

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

C
on

gr
ue

nc
e

cl
as

se
s

Resource instances

u

wv

Moovac

■ Tuples (mi, ri) ⇒ cell in MRT for operation i

14

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

C
on

gr
ue

nc
e

cl
as

se
s

Resource instances

u

wv

Moovac

■ Tuples (mi, ri) ⇒ cell in MRT for operation i

■ Overlap variables model relations between operations
C

on
gr

ue
nc

e
cl

as
se

s

Resource instances

u

wv

14

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

C
on

gr
ue

nc
e

cl
as

se
s

Resource instances

u

wv

Moovac

■ Tuples (mi, ri) ⇒ cell in MRT for operation i

■ Overlap variables model relations between operations
C

on
gr

ue
nc

e
cl

as
se

s

Resource instances

u

wv

μuv = 1

14

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

C
on

gr
ue

nc
e

cl
as

se
s

Resource instances

u

wv

Moovac

■ Tuples (mi, ri) ⇒ cell in MRT for operation i

■ Overlap variables model relations between operations
C

on
gr

ue
nc

e
cl

as
se

s

Resource instances

u

wv

εuw = 1
μuw = 1μuv = 1

14

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

C
on

gr
ue

nc
e

cl
as

se
s

Resource instances

u

wv

Moovac

■ Tuples (mi, ri) ⇒ cell in MRT for operation i

■ Overlap variables model relations between operations
C

on
gr

ue
nc

e
cl

as
se

s

Resource instances

u

wv

εuw = 1
μuw = 1

εvw = 1

μuv = 1

14

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Approaches At A Glance

15

Modulo SDC
Canis et al.

■ Resource constraints are not part of the
linear program

■ Operations are assigned heuristically to
MRT

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Approaches At A Glance

15

Modulo SDC
Canis et al.

Formulation by

Eichenberger &

Davidson

■ Resource constraints are not part of the
linear program

■ Operations are assigned heuristically to
MRT

■ Exact formulation

■ Time-indexing → large number of binary

variables, complicated constraints

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Approaches At A Glance

15

Modulo SDC
Canis et al.

Formulation by

Eichenberger &

Davidson

Moovac
Oppermann et al.

■ Resource constraints are not part of the
linear program

■ Operations are assigned heuristically to
MRT

■ Exact formulation

■ Time-indexing → large number of binary

variables, complicated constraints

■ Novel exact formulation

■ Uses fewer integer variables and overlap

variables to model inequality between
them

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Evaluation
■ Schedulers implemented with CPLEX 12.6.3

16

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Evaluation
■ Schedulers implemented with CPLEX 12.6.3

■ Single-threaded execution on Intel Xeon E5-2667’s at
3.3 GHz

16

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Evaluation
■ Schedulers implemented with CPLEX 12.6.3

■ Single-threaded execution on Intel Xeon E5-2667’s at
3.3 GHz

■ Time limit of 5 min or 60 min per candidate II

• increment II if no solution was found

16

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Evaluation
■ Schedulers implemented with CPLEX 12.6.3

■ Single-threaded execution on Intel Xeon E5-2667’s at
3.3 GHz

■ Time limit of 5 min or 60 min per candidate II

• increment II if no solution was found

■ Attempted to schedule 225 graphs from CHStone and
MachSuite

• up to 1124 operations / 
up to 107 resource-constrained operations

16

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Results (Quality)

17

■ 5 min time limit

Graphs Moovac vs. Modulo SDC Moovac vs. Eichenberger’s ILP
shorter II found by … shorter II found by …

Size # Moovac Same M. SDC Moovac Same E.B.’s
all 225 6 217 2 6 219 0

small
 203 1 202 0 0 203 0
large 22 5 15 2 6 16 0

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Results (Quality)

17

■ 5 min time limit

Graphs Moovac vs. Modulo SDC Moovac vs. Eichenberger’s ILP
shorter II found by … shorter II found by …

Size # Moovac Same M. SDC Moovac Same E.B.’s
all 225 6 217 2 6 219 0

small
 203 1 202 0 0 203 0
large 22 5 15 2 6 16 0

Modulo SDC delivers
high-quality results

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Results (Quality)

17

■ 5 min time limit

Graphs Moovac vs. Modulo SDC Moovac vs. Eichenberger’s ILP
shorter II found by … shorter II found by …

Size # Moovac Same M. SDC Moovac Same E.B.’s
all 225 6 217 2 6 219 0

small
 203 1 202 0 0 203 0
large 22 5 15 2 6 16 0

Modulo SDC delivers
high-quality results

Modulo SDC found
schedules where Moovac

ran out of time

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Results (Quality)

17

■ 5 min time limit

Graphs Moovac vs. Modulo SDC Moovac vs. Eichenberger’s ILP
shorter II found by … shorter II found by …

Size # Moovac Same M. SDC Moovac Same E.B.’s
all 225 6 217 2 6 219 0

small
 203 1 202 0 0 203 0
large 22 5 15 2 6 16 0

Modulo SDC delivers
high-quality results

Modulo SDC found
schedules where Moovac

ran out of time

Exact schedulers
should find same II, 
but E.B. hit time limit

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Results (Time)

18

■ Scheduling duration with 5 min time limit:

Graphs Moovac Modulo SDC Eichenberger’s ILP
Size # Time [min] Timeouts Time [min] Timeouts Time [min] Timeouts
all 225 489 96 753 148 932 177

small 203 3 0 131 26 5 0
large 22 486 96 623 122 927 177

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Results (Time)

18

■ Scheduling duration with 5 min time limit:

Graphs Moovac Modulo SDC Eichenberger’s ILP
Size # Time [min] Timeouts Time [min] Timeouts Time [min] Timeouts
all 225 489 96 753 148 932 177

small 203 3 0 131 26 5 0
large 22 486 96 623 122 927 177

Moovac is faster than
the other approaches

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Results (Time)

18

■ Scheduling duration with 5 min time limit:

Graphs Moovac Modulo SDC Eichenberger’s ILP
Size # Time [min] Timeouts Time [min] Timeouts Time [min] Timeouts
all 225 489 96 753 148 932 177

small 203 3 0 131 26 5 0
large 22 486 96 623 122 927 177

Moovac is faster than
the other approaches

The timeouts
dominate the overall time 
e.g. 96 x 5 min = 480 min

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Results (Time)

18

■ Scheduling duration with 5 min time limit:

Graphs Moovac Modulo SDC Eichenberger’s ILP
Size # Time [min] Timeouts Time [min] Timeouts Time [min] Timeouts
all 225 489 96 753 148 932 177

small 203 3 0 131 26 5 0
large 22 486 96 623 122 927 177

Moovac is faster than
the other approaches

The timeouts
dominate the overall time 
e.g. 96 x 5 min = 480 min

M. SDC seems to get stuck
even on small graphs

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Insights

■ How can an exact formulation be faster overall than
the heuristic?

19

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Insights

■ How can an exact formulation be faster overall than
the heuristic?

• ILP solver “sees” whole problem, can prove
infeasibility of scheduling attempt (often: fast)

19

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Insights

■ How can an exact formulation be faster overall than
the heuristic?

• ILP solver “sees” whole problem, can prove
infeasibility of scheduling attempt (often: fast)

• Heuristic can only fail to find a solution in the
given time budget

19

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Insights

■ Modulo SDC and Moovac complement each other

20

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Insights

■ Modulo SDC and Moovac complement each other

■ “Synergistic scheduling” 
 
Moovac:		 	 489 min 
Modulo SDC:	 753 min 
Combined: 429 min

20

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Insights

■ What makes Moovac better suited for HLS modulo
scheduling than Eichenberger’s ILP?

21

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Insights

■ What makes Moovac better suited for HLS modulo
scheduling than Eichenberger’s ILP?

• Up to 1000+ operations, candidate IIs > 50
require humongous amounts of decision
variables in time-indexed formulation

21

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Insights

■ What makes Moovac better suited for HLS modulo
scheduling than Eichenberger’s ILP?

• Up to 1000+ operations, candidate IIs > 50
require humongous amounts of decision
variables in time-indexed formulation

• Majority of ops is unconstrained, only subject to
precedence constraints and exempt from all MRT
handling in Moovac

21

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Outlook
■ Smarter search through the (rather large) II space

22

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Outlook
■ Smarter search through the (rather large) II space

• Observation:

22

Ti
m

e
to

 s
ol

ut
io

n
[s

ec
]

0

40

80

120

Candidate II
12 13 14 15 16 17 18 19 20

Smallest
feasible IIInfeasible IIs

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Outlook
■ Smarter search through the (rather large) II space

• Observation:

• MaxII → MinII ?

22

Ti
m

e
to

 s
ol

ut
io

n
[s

ec
]

0

40

80

120

Candidate II
12 13 14 15 16 17 18 19 20

Smallest
feasible IIInfeasible IIs

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Outlook
■ Smarter search through the (rather large) II space

• Observation:

• MaxII → MinII ?

• Binary search ? 

22

Ti
m

e
to

 s
ol

ut
io

n
[s

ec
]

0

40

80

120

Candidate II
12 13 14 15 16 17 18 19 20

Smallest
feasible IIInfeasible IIs

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Outlook
■ Smarter search through the (rather large) II space

• Observation:

• MaxII → MinII ?

• Binary search ? 

■ Integrate II search into the Moovac formulation

22

Ti
m

e
to

 s
ol

ut
io

n
[s

ec
]

0

40

80

120

Candidate II
12 13 14 15 16 17 18 19 20

Smallest
feasible IIInfeasible IIs

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Outlook
■ Smarter search through the (rather large) II space

• Observation:

• MaxII → MinII ?

• Binary search ? 

■ Integrate II search into the Moovac formulation

• Time-indexed formulations: 
decision variables dependent on candidate II

22

Ti
m

e
to

 s
ol

ut
io

n
[s

ec
]

0

40

80

120

Candidate II
12 13 14 15 16 17 18 19 20

Smallest
feasible IIInfeasible IIs

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Conclusion

■ Loop pipelining can reasonably be applied to wide
range of HLS loops

23

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Conclusion

■ Loop pipelining can reasonably be applied to wide
range of HLS loops

■ The Modulo SDC heuristic delivers results on a par
with exact formulations

23

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Conclusion

■ Loop pipelining can reasonably be applied to wide
range of HLS loops

■ The Modulo SDC heuristic delivers results on a par
with exact formulations

■ The novel, exact Moovac formulation is surprisingly
practical in its time-limited mode

23

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Conclusion

■ Loop pipelining can reasonably be applied to wide
range of HLS loops

■ The Modulo SDC heuristic delivers results on a par
with exact formulations

■ The novel, exact Moovac formulation is surprisingly
practical in its time-limited mode

■ Diverse options to reduce the scheduling time even
further exist

23

Thank you!
oppermann@esa.tu-darmstadt.de

