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Outline
■ Introduction to loop pipelining / modulo scheduling

■ Comparison of a novel & two existing approaches

• result quality, heuristic vs. exact

• time to schedule - it’s impractical to do exact 
modulo scheduling, right?
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■ C-based High-level Synthesis (HLS) 
needs to exploit all sources of parallelism
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■ C-based High-level Synthesis (HLS) 
needs to exploit all sources of parallelism

■ Loop pipelining 
= new loop iterations are started after a fixed 
number of time steps, called Initiation Interval (II)

• Partially overlapping execution of subsequent 
loop iterations
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■ Increases throughput!

■ Executing n iterations → 
   n · SL 	 	 	 	 time steps w/o pipelining 
   (n-1) · II + SL		 time steps with pipelining

4



J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24
Ite

ra
tio

n 
0

 
0
1
2
3
4

Initiation
Interval (II)

…

Schedule
Length (SL)

Ite
ra

tio
n 

1

 
0
1
2
3
4

Ite
ra

tio
n 

2

 
0
1
2
3
4

Loop Pipelining

■ Increases throughput!

■ Executing n iterations → 
   n · SL 	 	 	 	 time steps w/o pipelining 
   (n-1) · II + SL		 time steps with pipelining

■ Primary objective is to find smallest feasible II

• Limited by dependencies between iterations

• Subject to resource constraints (cache ports, 
DSPs, …)

4
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■ Operations from different iterations 
are active at the same time
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■ Operations from different iterations 
are active at the same time

■ Resource constraints have to hold for 
congruence classes (modulo II) of time steps

• “modulo resource constraints”
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Loop Pipelining

5

■ Operations from different iterations 
are active at the same time

■ Resource constraints have to hold for 
congruence classes (modulo II) of time steps

• “modulo resource constraints”

■ Suitable schedules for loop pipelining are found 
by modulo schedulers
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for (i = 1 .. N) 
{
  t    = a[i-1];
  a[i] = s + t;
  s    = t * t;
}
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ld a[i-1]

add mul

st a[i]

Example

6

for (i = 1 .. N) 
{
  t    = a[i-1];
  a[i] = s + t;
  s    = t * t;
}

data flow implies precedence 
constraints
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ld a[i-1]

add mul

st a[i]

Example

6

for (i = 1 .. N) 
{
  t    = a[i-1];
  a[i] = s + t;
  s    = t * t;
}

ld a[i-1]

add mul

st a[i]

add operation depends on the value of s 
from the previous iteration

Load value only after it was 
written in the previous iteration

Both edges imply 
inter-iteration dependencies


a.k.a “backedges”
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Iteration 0 /
modulo schedule

Iteration 1 Iteration 2

…

Time
step

ld 
a[i-1]

st 
a[i]*
+

ld 
a[i-1]

st 
a[i]*
+

ld 
a[i-1]

st 
a[i]*
+
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General Approach

■ Determine lower and upper bound for the II

■ Try to find a feasible modulo schedule

• Input: candidate II, precedence edges, resource 
constraints, operation latencies

• Output: start times for operations, or attempt 
fails

7
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General Approach

■ Here: Compare schedulers based on 
Integer Linear Programs (ILP)

■ Scheduling graphs with only typical HLS 
precedence constraints and backedges is easy

• e.g. as a System of Difference Constraints (SDC), 
special ILP that can be solved in polynomial 
time

■ Approaches differ in the modelling of resource 
constraints

8
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General Approach

■ Ak instances/units/… of a 
certain scarce resource kind k

■ Candidate II ⇒ congruence  
classes of operations’ 
start times

■ Each instance can be used 
once per congruence class 
by an operation i

■ “modulo reservation table” (MRT)

9
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Modulo SDC
■ Heuristic using an SDC and an explicit MRT

• Start with a resource-unconstrained schedule

• Incrementally try to assign operations to MRT and add 
constraints to SDC

• Backtracking required if SDC becomes infeasible

• Successful if all resource-constrained ops fit in MRT

10

min …
s.t.
 vj - vi ≤ 1
 …

MRT SDC

Modulo SDCi

j
h
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■ Exact formulation 
general ILP with time-indexed binary variables 
am,i := “operation i starts in congruence class m”
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Eichenberger’s Formulation

■ Exact formulation 
general ILP with time-indexed binary variables 
am,i := “operation i starts in congruence class m”

■ Example: Resource constraint for 
	kind k, congruence class 2 
fulfilled iff. 
 
	∑x a2,x ≤ Ak 
 
for all operations x that use 
a k-resource

11
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Moovac

■ Moovac = Modulo Overlap Variable Constraints

■ Adapted task scheduling formulation 
based on overlap variables

■ Exact formulation, general ILP

■ Integer variables model 
start times ti

12
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Moovac
■ Let i, j be operations that require a resource of kind k

■ Resource assignment modelled by

• Integer variables 
ri		 resource instance ID ∈ [0 … Ak - 1] 
mi	 congruence class ID ∈ [0 … candidate II - 1]

• Binary overlap variables 
εij	 :=	 1	 iff.		 ri 	 <	  rj  
μij	 :=	 1	 iff.		 mi	<	 mj

■ No resource conflict iff. 
	 	 	 	 	 εij + εji	+	 μij + μji	≥	1

13

“i and j are either assigned 
to different resource instances, 

or scheduled to different 
congruence classes”
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Approaches At A Glance

15

Modulo SDC 
Canis et al.

Formulation by

Eichenberger & 

Davidson

Moovac 
Oppermann et al.

■ Resource constraints are not part of the 
linear program


■ Operations are assigned heuristically to 
MRT

■ Exact formulation

■ Time-indexing → large number of binary 

variables, complicated constraints

■ Novel exact formulation

■ Uses fewer integer variables and overlap 

variables to model inequality between 
them



J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Evaluation
■ Schedulers implemented with CPLEX 12.6.3
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Evaluation
■ Schedulers implemented with CPLEX 12.6.3

■ Single-threaded execution on Intel Xeon E5-2667’s at 
3.3 GHz

■ Time limit of 5 min or 60 min per candidate II

• increment II if no solution was found

■ Attempted to schedule 225 graphs from CHStone and 
MachSuite

• up to 1124 operations / 
up to   107 resource-constrained operations

16
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Results (Quality)
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■ 5 min time limit

Graphs Moovac vs. Modulo SDC Moovac vs. Eichenberger’s ILP 
shorter II found by … shorter II found by …

Size # Moovac Same M. SDC Moovac Same E.B.’s
all 225 6 217 2 6 219 0

small
 203 1 202 0 0 203 0
large 22 5 15 2 6 16 0
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Results (Quality)

17

■ 5 min time limit

Graphs Moovac vs. Modulo SDC Moovac vs. Eichenberger’s ILP 
shorter II found by … shorter II found by …

Size # Moovac Same M. SDC Moovac Same E.B.’s
all 225 6 217 2 6 219 0

small
 203 1 202 0 0 203 0
large 22 5 15 2 6 16 0

Modulo SDC delivers 
high-quality results

Modulo SDC found 
schedules where Moovac 

ran out of time

Exact schedulers 
should find same II, 
but E.B. hit time limit
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Results (Time)

18

■ Scheduling duration with 5 min time limit:

Graphs Moovac Modulo SDC Eichenberger’s ILP
Size # Time [min] Timeouts Time [min] Timeouts Time [min] Timeouts
all 225 489 96 753 148 932 177

small 203 3 0 131 26 5 0
large 22 486 96 623 122 927 177
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Results (Time)

18

■ Scheduling duration with 5 min time limit:
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■ Scheduling duration with 5 min time limit:

Graphs Moovac Modulo SDC Eichenberger’s ILP
Size # Time [min] Timeouts Time [min] Timeouts Time [min] Timeouts
all 225 489 96 753 148 932 177

small 203 3 0 131 26 5 0
large 22 486 96 623 122 927 177

Moovac is faster than 
the other approaches

The timeouts 
dominate the overall time 
e.g. 96 x 5 min = 480 min

M. SDC seems to get stuck 
even on small graphs
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Insights

■ How can an exact formulation be faster overall than 
the heuristic?

• ILP solver “sees” whole problem, can prove 
infeasibility of scheduling attempt (often: fast)

• Heuristic can only fail to find a solution in the 
given time budget

19



J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Insights

■ Modulo SDC and Moovac complement each other

20



J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis / 24

Insights

■ Modulo SDC and Moovac complement each other

■ “Synergistic scheduling” 
 
Moovac:		 	 489 min 
Modulo SDC:	 753 min 
Combined: 429 min
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Insights

■ What makes Moovac better suited for HLS modulo 
scheduling than Eichenberger’s ILP?

• Up to 1000+ operations, candidate IIs > 50 
require humongous amounts of decision 
variables in time-indexed formulation

• Majority of ops is unconstrained, only subject to 
precedence constraints and exempt from all MRT 
handling in Moovac

21
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Outlook
■ Smarter search through the (rather large) II space

• Observation:

• MaxII → MinII ?

• Binary search ? 

■ Integrate II search into the Moovac formulation

• Time-indexed formulations: 
# decision variables dependent on candidate II
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Conclusion

■ Loop pipelining can reasonably be applied to wide 
range of HLS loops

■ The Modulo SDC heuristic delivers results on a par 
with exact formulations

■ The novel, exact Moovac formulation is surprisingly 
practical in its time-limited mode

■ Diverse options to reduce the scheduling time even 
further exist
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