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= |ntroduction to loop pipelining / modulo scheduling

= Comparison of a novel & two existing approaches
» result quality, heuristic vs. exact

- time to schedule - it’'s impractical to do exact
modulo scheduling, right?

Formulation by
Eichenberger &
Davidson

Modulo SDC Moovac

Oppermann et al.

Canis et al.

state-of-the-art heuristic state-of-the-art exact formulation novel exact formulation
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Loop Pipelining

= | l[ol0] } Initiation
§ S| Interval (1)
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= C-based High-level Synthesis (HLS) 221 1821, . .
. . ©
needs to exploit all sources of parallelism 8|3
=14

= Loop pipelining
= new loop iterations are started after a fixed
number of time steps, called Initiation Interval (ll)

- Partially overlapping execution of subsequent
loop iterations
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Loop Pipelining
(

ol0] } Initiation
Schedule E 1 Interval (I)
Length (SL)< a2 |-
= |Increases throughput! HEIREE
\=14] |E[2] [0
. . . ¢/ 3| s
= Executing n iterations — =[4] |&[2] = =
n-SL time steps w/o pipelining S 2

(n-1) - I + SL  time steps with pipelining
= Primary objective is to find smallest feasible Il

- Limited by dependencies between iterations

- Subject to resource constraints (cache ports,
DSPs, ...)
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= Operations from different iterations
are active at the same time

= Resource constraints have to hold for
congruence classes (modulo Il) of time steps

e “modulo resource constraints”
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Loop Pipelining

= Operations from different iterations
are active at the same time

Iteration O
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Iter

= Resource constraints have to hold for
congruence classes (modulo Il) of time steps

e “modulo resource constraints”

= Suitable schedules for loop pipelining are found
by modulo schedulers
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for (1 =1 N)
{
t = a[1-1];
ali] = s + t;
S =t * t;

data flow implies precedence
constraints
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Example

for (1 =1 N)
i
t ‘_=_VC] ['I. - 1] ,
a[i] = s + t;
S =t * t;
} add operation depends on the value of s

from the previous iteration

s

Both edges imply
inter-iteration dependencies
a.k.a “backedges”

|

_—

Load value only after it was

written in the previous iteration
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Example
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General Approach

= Determine lower and upper bound for the |l
= Try to find a feasible modulo schedule

- Input: candidate |l, precedence edges, resource
constraints, operation latencies

- QOutput: start times for operations, or attempt
fails
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General Approach

= Here: Compare schedulers based on
Integer Linear Programs (ILP)

= Scheduling graphs with only typical HLS
precedence constraints and backedges is easy

- e.g. as a System of Difference Constraints (SDC),
special ILP that can be solved in polynomial
time

= Approaches differ in the modelling of resource
constraints
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General Approach
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classes
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= Each instance can be used
once per congruence class [
by an operation i

= “modulo reservation table” (MRT)
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Modulo SDC

= Heuristic using an SDC and an explicit MRT
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Modulo SDC

= Heuristic using an SDC and an explicit MRT

Start with a resource-unconstrained schedule

Incrementally try to assign operations to MRT and add
constraints to SDC

Backtracking required if SDC becomes infeasible

Successful if all resource-constrained ops fit in MRT

Modulo SDC

MRT SDC
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Eichenberger’s Formulation

= Exact formulation
general ILP with time-indexed binary variables
am,i .= “operation / starts in congruence class m”
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Eichenberger’s Formulation

= Exact formulation
general ILP with time-indexed binary variables
am,i .= “operation / starts in congruence class m”

= Example: Resource constraint for

Kind k, congruence class 2 [
. . 9,0 i || 20, AN
fulfilled iff. )
Q 210 A [ 31, A4 N
S @ < a a a a
= 2.0 2i || 2, ON
Zx as x < Ak E%:%
\ 1,0 1| [, A1 N

for all operations x that use
a k-resource

Operations
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= Moovac = Modulo Overlap Variable Constraints

= Adapted task scheduling formulation
based on overlap variables
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= Moovac = Modulo Overlap Variable Constraints

= Adapted task scheduling formulation
based on overlap variables

= Exact formulation, general ILP

= Integer variables model
start times t;
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Moovac

= Let/, j be operations that require a resource of kind k
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Moovac

= Let/, j be operations that require a resource of kind k
= Resource assignment modelled by

* Integer variables
ri  resource instance ID € [0 ... Ax- 1]

m; congruence class ID € [0 ... candidate Il - 1]

- Binary overlap variables
g =1 1Iff. rn <
ui =1 Iff. mi < m,

“/ and J are either assigned
to different resource instances,
or scheduled to different
congruence classes”

= No resource conflict Iff.
Eij+ i+ Uj+ Hji= 1
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= Tuples (mj, r) = cell in MRT for operation i
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Approaches At A Glance

= Resource constraints are not part of the
Modulo SDC linear program

Canis et al. = Operations are assigned heuristically to
MRT

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 15 /24



Approaches At A Glance

Resource constraints are not part of the

Modulo SDC linear program
Canis et al. = Operations are assigned heuristically to
MRT
Formulation by = Exact formulation
Eichenberger & = Time-indexing — large number of binary
Davidson variables, complicated constraints

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 15 /24



Approaches At A Glance

Resource constraints are not part of the

Modulo SDC linear program
Canis et al. = Operations are assigned heuristically to
MRT
Formulation by = Exact formulation
E|chen!oerger & = Time-indexing — large number of binary
Davidson variables, complicated constraints

= Novel exact formulation

Moovac = Uses fewer integer variables and overlap
Oppermann et al. variables to model inequality between
them
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Evaluation

= Schedulers implemented with CPLEX 12.6.3

= Single-threaded execution on Intel Xeon E5-2667’s at
3.3 GHz

= Time limit of 5 min or 60 min per candidate Il
- increment |l if no solution was found

= Attempted to schedule 225 graphs from CHStone and
MachSuite

- up to 1124 operations /
up to 107 resource-constrained operations

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 16 /24



Results (Quality)

= 5 min time limit

Graphs Moovac vs. Modulo SDC Moovac vs. Eichenberger’s ILP
| shorter Il found by ... shorter Il found by ...

Size # Moovac Same M. SDC | Moovac Same E.B.’s
@l 25| 6 o217 2 | 6 219 . 0
________ small 203| 1 202 0 | O 28 0

arge | 22 5 15 2 6 16 0
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Results (Quality)

= 5 min time limit

Graphs Moovac vs. Modulo SDC Moovac vs. Eichenberger’s ILP
| shorter Il found by ... shorter Il found by ...

Size # Moovac Same M. SDC Moovac§ Same E.B.’s
@l 25| 6 217 2 | 6 219 . 0
small 203 | 1 202 0 | 0 . 208 . 0

15 2 6

Modulo SDC delivers
high-quality results Exact schedulers

should find same I,
Modulo SDC found but E.B. hit time limit
schedules where Moovac

ran out of time
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Results (Time)

= Scheduling duration with 5 min time limit:

Graphs Moovac Modulo SDC Eichenberger’s ILP
Size | # |Time [min]é Timeouts| Time [min] Timeouts| Time [min] Timeouts
@l 25| 489 96 | 753 148 | 932 177
________ small 208 )| 8 .0 A8l 26 SO
large 22 486 96 623 122 927 177
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Results (Time)

= Scheduling duration with 5 min time limit:

Graphs Moovac Modulo SDC Eichenberger’s ILP
Size i # |Time [min]: Timeouts| Time [min] : Timeouts| Time [min] | Timeouts

all i 225 489 | 96 753 i 148 932 177

Moovac is faster than
the other approaches

M. SDC seems to get stuck
even on small graphs

The timeouts
dominate the overall time
e.g. 96 x 5 min = 480 min
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= How can an exact formulation be faster overall than
the heuristic?
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= How can an exact formulation be faster overall than
the heuristic?

* |LP solver “sees” whole problem, can prove
infeasibility of scheduling attempt (often: fast)

- Heuristic can only fail to find a solution in the
given time budget

J. Oppermann, TU Darmstadt: ILP-based Modulo Scheduling for High-level Synthesis 19 /24



= Modulo SDC and Moovac complement each other
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= Modulo SDC and Moovac complement each other
= “Synergistic scheduling”

Moovac: 489 min
Modulo SDC: 753 min
Combined: 429 min
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= \What makes Moovac better suited for HLS modulo
scheduling than Eichenberger’s ILP?
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variables in time-indexed formulation
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= \What makes Moovac better suited for HLS modulo
scheduling than Eichenberger’s ILP?

- Up to 1000+ operations, candidate lls > 50
require humongous amounts of decision
variables in time-indexed formulation

- Majority of ops is unconstrained, only subject to
precedence constraints and exempt from all MF
handling in Moovac

T

gl b
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= Smarter search through the (rather large) |l space
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Outlook

= Smarter search through the (rather large) |l space
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= Smarter search through the (rather large) |l space
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= Smarter search through the (rather large) |l space

120
- Observation: g
.§ 80 Infeasible lls Smgllest
+ Maxll = Minll ? 3 ISASBIE
2 40
)
- Binary search ?  F
0

12 13 14 15 16 17 18 19 20
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Conclusion

= Loop pipelining can reasonably be applied to wide
range of HLS loops

= The Modulo SDC heuristic delivers results on a par
with exact formulations

= The novel, exact Moovac formulation is surprisingly
practical in its time-limited mode

= Diverse options to reduce the scheduling time even
further exist
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