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Abstract—With growing data set sizes, many scientific and data
center HPC workloads observe an increasing scaling imbalance,
e.g., between compute and memory capacities. As a solution,
disaggregated system architectures employ spatial distribution
of the different resources. They aim for independent scaling of
the different resource kinds (e.g., compute, non-volatile storage,
memory), and use fast communication fabrics for their intercon-
nection.

However, for some bulk operations, such as reductions and
collections, it is still beneficial to perform them close to the
memories, avoiding the need to move large volumes of data over
the fabric.

This work realizes a disaggregated system capable of perform-
ing such near-data processing (NDP) operations by extending
the distributed memory controllers with hardware-accelerated
compute capabilities. The actual computations execute on FPGAs
and can be abstractly described using C/C++ as compilable by
high-level hardware synthesis (HLS) tools.

We have aimed for high usability of our technology also by
HPC experts unfamiliar with hardware design. An automated
toolflow encapsulates the creation and deployment of the actual
accelerators in the disaggregated system. The NDP operations
execute distributed across all memory nodes, and are easily
accessed using a simple MPI-based programming interface that
requires only minimal effort to use in existing applications.

Our solution is demonstrated using a prototype disaggregated
system based on the low-latency EXTOLL fabric for communi-
cation. We evaluate both conventional reductions/collectives as
well as complete machine-learning inference tasks.

I. INTRODUCTION

HPC performance is constantly increasing, with the first
system reaching over one Exaflop on specialized benchmarks
already being available [1]. Workloads harnessing that much
compute power typically operate on massive amounts of data.
However, a scaling imbalance can be observed between the
available compute power and memory capacities. As a result,
disaggregated system architectures have emerged, employing
spatial distribution of compute and memory subsystems to
address scalability issues.

Compared to local memory, accesses to a memory location
on a distributed memory node have additional latency imposed
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by the interconnect network. This downside can be addressed
by moving parts of the computation closer to the memory, fol-
lowing the Near-Data Processing (NDP) paradigm. However,
as the memory nodes do not have general-purpose processors,
and instead just contain SDRAM-level memory controllers and
network interfaces, a different processing paradigm will be
needed.

A suitable paradigm for such an architecture is reconfig-
urable computing based on Field Programmable Gate Arrays
(FPGAs). Not only can FPGAs realize the low-level memory
controllers and network interfaces very efficiently, they also
provide the capability to add dedicated compute accelerators
close to both of these resources. However, using such accel-
erators generally does require specialized knowledge, e.g., in
digital circuit design and computer architecture, that will be
unfamiliar to most HPC software developers. Thus, to make
the technology widely usable, powerful tool support is required
to bridge the gap.

The tool support must address two challenges: First, provid-
ing a familiar developer-level view of the capabilities of the
NDP memory nodes. Second, a robust tool flow for describing,
generating, and deploying the actual hardware accelerators in
the disaggregated system.

This paper addresses both of these issues by making the
following contributions. First, we provide a software library
to utilize an NDP-capable disaggregated memory system with
a familiar MPI-based programming interface. Secondly, we
supply an automated toolflow for creating hardware designs for
the NDP accelerators. Our current prototype uses NDP-capable
memory nodes integrating an FPGA and HMC memory. In
combination, these two contributions offer a simple way of
utilizing a disaggregated system in combination with FPGA-
based NDP processing. We demonstrate the capabilities and
performance of our solution using two sample applications.

II. SYSTEM ARCHITECTURE

We begin by discussing the design considerations for our
implementation. In Section II-A, we provide an introduction
to MPI, followed by the required additions for memory nodes
in Section II-B. Section II-C describes the utilized low-latency
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Fig. 1. MPI cluster with disaggregated compute (blue) memory nodes
(yellow), extended with NDP accelerators (red).

EXTOLL interconnect fabric. Finally, the complete system
topology for our prototype is described in Section II-D.

A. Message Passing Interface

A computing cluster typically consists of hundreds or thou-
sands of compute nodes. In order to fully harness its com-
pute power, applications need to compute on multiple nodes
simultaneously. To distribute computations across nodes, the
message passing interface (MPI) [2] is used for communi-
cation between the nodes. Communication can occur in two
ways: two-sided communication involves sender and receiver,
whereas with one-sided communication, where a node can
access parts of another node’s memory without interrupting
that node’s computations.

In addition to this node-to-node communication, MPI pro-
vides communication across multiple nodes, called collectives:
Synchronization functionality is provided by MPI Barrier.
Data can be distributed to all nodes by MPI Bcast or
MPI Scatter. Collecting data on the root node is realized
by MPI Gather. MPI Reduce performs a reduction operation
over data distributed over all nodes. The reduction function
to execute is often selected from a catalog of predefined
operations. However, in MPI it is also possible to define
custom operations for the reduction.

For a finer-grained control over the nodes to be involved
in a computing task, the concept of Communicators exists.
A communicator can be MPI COMM WORLD, which rep-
resents all available nodes in the cluster, but it can also just
refer to a subset of nodes.

Nowadays, nodes in high-performance computing clusters
are often extended by accelerators (e.g., GPUs). This increases
the processing power, but as they are usually connected to and
controlled by general purpose CPUs, their presence does not
change the fundamental programming model of MPI.

B. Heterogeneous Setup

Figure 1 shows a simplified sketch of a disaggregated
cluster. On the left are the general-purpose nodes, which are
able to execute MPI applications. Memory nodes capable of
accelerated near-data processing are attached to the cluster-
wide interconnect. The use of heterogeneous processing el-
ements (general-purpose processors, NDP accelerators) in a
single MPI network could be enabled in multiple ways:

1) Re-create the full MPI application on the NDP accelera-
tor. On an FPGA, this could be achieved by using High-
Level Synthesis (HLS) to translate a C/C++ application
to a hardware description language (HDL), or by directly
writing custom HDL. The available FPGA size may
pose a constraint for larger codes. In a heterogeneous
system, the maximum MPI performance is limited by
the performance of the slowest node, as faster nodes
have to wait at the next synchronization point, or for
the next data transfer. In such a heterogeneous system,
the performance advantages of the FPGA acceleration
cannot be fully realized.

2) Implement just part of the computing task on the NDP
nodes, and include the NDP accelerators in an additional
communicator disjunct from MPI COMM WORLD.

3) Use one-sided communication to access the memory of
the NDP node. The entire workload runs on the general-
purpose node, the memory node is used as pure data
storage. No additional computations are performed at
the remote memory node itself.

Our approach is a hybrid of option 2) and 3). One-sided
communication is used for data transfers between the nodes,
for example an MPI Bcast uses an Remote Memory Access
(RMA) PUT operation to distribute the data from the root node
to all other nodes. In addition, we move suitable computing
tasks from general purpose compute nodes to the NDP mem-
ory nodes, and interact with them from the general-purpose
compute nodes using an MPI-based API. With this approach,
we can provide the desired NDP capabilities. At the same time,
the approach does not require the implementation of the full
MPI application on the accelerator. This allows us to focus on
the parts of an application which actually benefit from FPGA-
based NDP.

C. EXTOLL Fabric

Our work is based on the EXTOLL interconnection fabric
[3]. In contrast to Infiniband, the EXTOLL design integrates
the switching functionality within the network interface con-
troller (NIC). This allows the creation of switchless network
topologies without scaling issues. At the same time, the NIC
has a competitive latency between just 600 and 800 ns [4].

The network interface is realized by the Tourmalet ASIC.
This chip provides six network links with 12 lanes each,
and thus provides a maximum raw bandwidth per link of
100.8Gbps. To the host, the NIC provides a PCIe 3.0 con-
nection with 16 lanes.

In addition to the ASIC implementation, an FPGA imple-
mentation for an EXTOLL interface exists. It was initially
used for prototyping the ASIC, but now forms a suitable base
for adding the NDP functionality. Due to the logic capacity
constraints on the FPGA, it does not offer the full functionality
of the ASIC (e.g., inter-link switching is not supported). But
these limitations do not affect our NDP prototype.
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Fig. 2. System setup consisting of two general purpose compute nodes (blue)
directly connected to five NDP memory nodes (yellow)

D. Topology of the System Prototype

Each of the Aspin v2 boards [5] at the heart of our prototype
implements a network-attached memory for the EXTOLL
fabric and provides two EXTOLL links. It utilizes a 2GB
Hybrid-Memory-Cube (HMC) as memory, and reaches over
8GBps peak write and read bandwidth for a single network
link. We use this board to realize the NDP memory nodes
of our disaggregated system. In a real system, the memory
nodes would of course provide larger memory capacities (at
least 1TB each). For our proof-of-concept implementation,
though, the available memory size on the prototype board does
not influence the performance.

With the switchless design of the EXTOLL fabric, it is
possible to create a variety of network topologies. A common
deployment is a 3D torus. This is achievable using the six
available network links on every NIC, combined with the
ASIC-integrated switching fabric.

The Aspin v2 board we use does not have this routing
fabric, and can thus only be connected directly to up to two
other EXTOLL nodes. As the focus of this work is on large
memory sizes, our proposed topology maximizes the number
of directly attached memory nodes. Such a system, with two
general purpose nodes having full-scale ASIC-based EXTOLL
NICs, and five memory nodes supporting FPGA-based NDP
processing, is shown in Figure 2. One link connects the two
general purpose compute nodes, leaving the remaining five
network ports available for connections to the NDP memory
nodes.

If a cluster consists of more than one compute node, the
total number of available network ports increases. Depending
on the exact network topology, NDP memory nodes can be
attached anywhere in the network. The switchless EXTOLL
interconnection provides routing within the ASIC-based NICs,
so that communication is possible between all nodes. Of
course, when a node is accessed via another node, the multi-
hop communication has a higher latency than the direct
communication.

In our actual prototype setup, we connect two Aspin v2 cards
acting as NDP memory nodes to a single ASIC-based NIC in
a general-purpose compute node. As the root node has six
available network ports, it would be possible to connect up to
six memory nodes to this root node, but we do not have that
many Aspin v2 cards available in our lab.

III. IMPLEMENTATION

Our system has two main components: the software on the
general purpose compute node (Section III-A), and the FPGA
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Fig. 3. Software (left) and hardware stack (right) on a system with one
compute node and one NDP memory node.

toolflow for the NDP memory node (Section III-B).

A. Host-Side Software

For interacting with the NDP memory nodes, we use a
separate communicator and exclude the NDP nodes from
MPI COMM WORLD.

If a call to an MPI collective operation is issued on the
NDP communicator, we use wrapper code inside our MPI
library to call a specialized implementation for accessing the
NDP memory node communicator. Memory management is
handled in software, and the actual network transfers use RMA
primitives provided by the EXTOLL NIC. All existing MPI
collective operations are supported by our implementation.

For the added functionality of custom NDP operations, we
introduce new functions to the MPI library, which are required
for the integration of the accelerators into the application.
We try to stay close to the original MPI terminology, the
key semantical difference being that these calls now specify
operations to occur locally on the memory nodes in an NDP
fashion. Each of these calls will execute their operations on
all NDP memory nodes in the NDP communicator in parallel.

• MPI_Local_Alloc(bytes) is used for allocation of
local memory on the NDP memory node.

• MPI_Local_Dealloc(void*) is used for dealloca-
tion of node-local memory

• MPI_Local_Map(function, input, output,
length) executes a custom operation on the NDP
memory node, which maps the elements in an array of
input data to output data of the same length (n:n).

• MPI_Local_Reduce(function, input,
length) locally executes a custom operation on
the memory nodes, which reduces an array of input data
to a single result value (n:1).

The software stack is shown on the left side in Figure 3. The
user application interacts with our wrapped MPI library. Inter-
nally, the wrapper utilizes the EXTOLL-provided libNAM for
managing the Aspin-based Network-attached Memory (NAM),
which in turn calls the libRMA2 to use low-level EXTOLL-link
specific communication primitives.

Figure 4 considers three different cases: It shows the opera-
tion of a non-disaggregated MPI cluster in (a), a disaggregated,
but non-NDP-capable cluster using RMA mechanisms in (b),
and finally a disaggregated NDP-capable cluster in (c). Each
of these setups executes the same workload, in this case the
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Fig. 5. Hardware Architecture for NDP accelerators on FPGA

accumulation of larger arrays of data distributed across all
nodes, with the result to be stored on all nodes (compute or
memory).

In a conventional MPI cluster (4.a), this can be realized by
first computing a local sum on all nodes, then performing a
MPI Reduce followed by a MPI Scatter. On a memory node
without NDP capabilities (4.b), all data has to be transferred
to the root node and accumulated there, with the result then
being distributed back to the memory nodes. The third diagram
(4.c) represents the approach chosen in this work on a system
with NDP-capable memory nodes. Parallel local accumula-
tion operations on all NDP memory nodes are invoked by
MPI Local Reduce, and the local partial sums can then be
collected using a MPI Reduce from the memory nodes back
to the root node, accumulated there, with the final sum then
distributed again using a MPI Scatter. In this manner, it is
possible to distribute workloads across NDP memory nodes
without having to implement the complete MPI application
on the NDP memory nodes.

B. Hardware on Memory Node

In our proof-of-concept design, the disaggregated NDP-
capable memory is realized on Aspin v2 boards. Each board
contains a Xilinx Virtex-7 FPGA, which has connectors for
two EXTOLL links and utilizes a HMC memory with a
capacity of 2GB for the actual storage. The FPGA system-
on-chip (SoC) design (shown in Figure 5) is based on the
Network-Attached-Memory architecture [5], which provides
the EXTOLL network stack (a) and an openHMC memory
controller (g) to interface with the discrete HMC memory
chip. A common streaming-based protocol is used inside of
the SoC, with translation blocks Network Transaction Layer
(NTL) (b) and HMC Transaction Layer (HTL) (f) performing
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Fig. 6. Sample TaPaSCo composition with FPGA PEs for the NDP operations
sum, maximum, minimum, average and multiply-accumulate.

the network-side and HMC-side conversions. This base design
already provides the RMA operations required in disaggre-
gated systems.

The new NDP functionality that is the focus of this work
is placed on a processing path parallel to that of the original
RMA operations. NDP requires two additions: A packet parser
(PP), shown as (c), which interprets incoming NDP requests,
and creates reply packets from the locally computed results, as
well as the actual NDP accelerators, which can perform their
own local memory accesses autonomously fom host-induced
RMA operations.

Actually creating the accelerators for the custom map and
reduce operations, though, does require expertise in hardware
design for FPGAs. To lower this key barrier to productive
use of the system by non-experts, we apply our experience in
automated toolflows for reconfigurable computing.

Thus, we integrated the Aspin v2 FPGA base-design as a
board target into the open-source framework TaPaSCo [6]. The
TaPaSCo framework provides a software runtime, an SoC base
architecture, and a toolflow for the automated generation of
task-based FPGA-based computing systems. In the TaPaSCo
framework, workloads are partitioned into tasks, that are then
launched on hardware processing elements (PEs). A PE can be
provided as an IP core (existing hardware block), or as C/C++
code. In the latter case, TaPaSCo automatically uses High-
Level-Synthesis (HLS) to generate IP cores for the codes.
PEs for the same task are grouped into a hardware thread
pool, multiple thread pools are grouped in a composition.
Note that the actual mix of PEs can be matched to the
needs of the workload (e.g., more GEMM units than FFT
units), allowing more parallel task launches on the larger
thread pools. For more complex scenarios involving a larger
number of task types, TaPaSCo does provide tool support for
automated Design Space Exploration to discover an optimal
mix. Figure 6 shows an example composition with accelerators
for five different kinds of tasks, where two sum tasks can be
computed in parallel.

Prior TaPaSCo versions assume that there is a host which
controls the PEs on the FPGA, either in the form of a PCIe
expansion board, or with host CPU and FPGA integrated on
the same chip. For the scenario described here, this is no longer
the case, and TaPaSCo has to be modified accordingly. Here,
EXTOLL network packets are used to send control commands
to the PEs and receive-back results. As the base for this modifi-
cation, we use a recently introduced optional TaPaSCo feature
called Cascabel [7]. Cascabel moves part of the TaPaSCo task



1 int mpi_sum(int arr[MAX_SIZE], int length) {
2 #pragma HLS ARRAY_RESHAPE variable=arr \
3 factor=16 dim=1
4 int i = 0, res = 0;
5 for (; i < length; ++i)
6 res += arr[i];
7 return res;
8 }

Listing 1: Sample HLS kernel implementing the MPI SUM
operation for the integer data type.

scheduler/dispatcher into dedicated hardware. In the original
TaPaSCo use-case, this allowed greatly increased task launch
rates of up to 6 million tasks per second in [7].

For the network-centric scenario targeted here, we replace
the front-end of the Cascabel dispatcher, which was initially
realized using a memory-mapped I/O (MMIO) region, with a
custom EXTOLL network packet parser (Figure 5.c), which
moves the MMIO functionality across the network. Thus,
EXTOLL RMA PUT messages can also launch tasks on the
accelerators, while RMA GET can also retrieve the status
and results of a task. Note that on the software side, this
mechanism is encapsulated in the MPI wrappers discussed
earlier, and the GET/PUT messages are also used to perform
their expected RMA operations.

As described above, the PEs implementing the actual NDP
operations can be described in a number of ways. For most
traditional HPC developers, the most accessible one will be
the use of C/C++ and HLS tools. Listing 1 shows an example
C HLS kernel for the MPI SUM operation, demonstrating how
a standard C/C++ function could be extracted from an existing
MPI application, and inserted into our toolflow targeting the
NDP memory nodes. The data type (integer in the example)
can easily be changed to more complex scalar or record
types. Since MPI operations can have variable length, the
example accepts the length as a parameter. When using a
constant length, or specifying an upper bound at compile time,
HLS tools are able to perform loop-unrolling and pipelining
for increased performance. The example in Listing 1 has an
additional HLS pragma for increasing the memory data width.
Instead of fetching a single 32 bit integer for every loop
iteration, the generated kernel can request sixteen integers (64
bytes) from the array arr in parallel. In this way, a partial loop-
unrolling is possible, and at the same time, the kernel makes
better use of the available memory bandwidth by employing
a 512 bit memory interface.

Despite the advances in HLS tools, HLS does not always
exploit the hardware to its fullest potential. In these cases,
our system can use the TaPaSCo capability of also including
manually-designed hardware blocks (similar to assembly-level
programming, e.g., in HPC maths libraries). Thus, very highly
optimized blocks using micro-architectural features such as
custom pipelines, special numeric formats and their associated
arithmetic functions, as well as custom caches/prefetchers can
be employed. This feature will be used in Section IV-C.

Figure 3 shows the entire interaction between the software
stack on the compute node, and hardware units on the NDP

memory node. A user application employing the proposed
software stack communicates over the EXTOLL link with the
FPGA. After passing through the network stack, the packet
processor dispatches the NDP operation to the appropriate
accelerator. During execution, the accelerator can access the
HMC memory through the memory stack. Results or the
completion of operations are obtained through polling.

Memory management is performed by libNAM and stored
inside the communicator structure. Memory handles allocated
by the provided function (MPI Local Alloc) are automatically
utilized in MPI calls of our library.

IV. EXPERIMENTAL EVALUATION

For our evaluation, we employ the setup shown in Figure 2.
We use a single host server, which is equipped with an
3.7GHz Intel i7-4820K. The EXTOLL NIC resides in a
PCIe 3.0 slot with 16 lanes. Two Aspin v2 boards are attached
to the host server. Both are connected by 12 lanes, resulting in
a bandwidth of 100.8Gbps for each board. For synthesizing
the bitstreams, the Vivado toolsuite (version 2020.1) by the
FPGA vendor Xilinx was used. The accelerator runs at a fre-
quency of 180MHz, the network and memory I/O subsystems
at 160MHz.

A. Latency Overhead

The first performance metric we evaluate is NDP latency.
We measure the time of dispatching an NDP operation by
running a NOP operation, which immediately completes. The
average after 1,000,000 runs is 3.7 µs of launch latency,
compared to the base latency of 2.5 µs to just execute a single
EXTOLL GET RMA primitive for fetching data from the
NAM to the host.

The difference in latency is mainly due to the communica-
tion mechanism used to launch the NDP operation. The launch
itself is realized by an EXTOLL PUT, while the result is
fetched by polling using EXTOLL GET. That communication
overhead will not change, of course, when processing larger
data sets using NDP. Without NDP, the communication time
will scale linearly with the growth of the data set size, as more
EXTOLL RMA operations have to performed to transfer the
data to the host handling the actual processing.

B. Standard MPI Operations

The MPI specification lists a catalog of predefined functions
for reduce operations. These functions can easily be formu-
lated in the HLS toolflow, as shown in Listing 1. For evaluating
our NDP proof-of-concept system, we have implemented and
measured the execution time for the MPI SUM operation. We
benchmark over array sizes from 8 up to 221 integers.

As a baseline, a non-NDP memory node is connected to
a general purpose compute node, resembling the system as
sketched in Figure 4.b. The application first fetches the data
from the memory node over the EXTOLL network, and then
calculates the sum in local memory. The data fetches are
realized by EXTOLL GET RMA primitives. As expected, the
execution time increases with growing array sizes.
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The NDP implementation is measured for a system having
(a) one, or (b) two NDP-capable memory nodes. The NDP
accelerator is generated from the HLS code shown in Listing 1,
which utilizes a 512 bit wide memory interface to the HMC
memory controller. In the setup with two nodes, it is assumed
that the data is distributed (partitioned) across both nodes.
Thus, a single accelerator only has to process half of the
total array size, and both accelerators will run in parallel. The
measured execution time covers both the dispatching of the
accelerator, NDP reduce operation itself, and the return of the
partial sums to the host for the final accumulation.

The graph in Figure 7 shows the measured execution times
for different array sizes. It can be seen that for small arrays
up to 256 integers, the baseline is the fastest implementation.
In these cases, the dispatch overhead is not amortized over the
very short actual NDP processing time.

For larger data sizes, the single NDP accelerator in (a)
benefits from the available local memory bandwidth, and
speedups of over 2x are observed. The actual performance of
the accelerator is limited by the memory controller, specifically
by the HTL logic and protocol conversions between the AXI4
interface used on the chip and the HMC packets required for
communicating with the discrete memory chip. According to
on-chip measurements, the accelerators can exploit between
80 to 90% of the theoretical HMC memory bandwidth in this
manner.

In the system with two NDP memory nodes (b), the
execution time for smaller arrays is even longer than with
one node. The reason for this is, that in the prototype, the
two partial results are currently fetched sequentially. When
scaling to a system with more nodes, these fetches should be
performed in parallel as well. The hardware is capable of this,
but the EXTOLL-provided libNAM would need to be extended
for such interrupt-driven non-blocking GET operations. On the
FPGA side, TaPaSCo already includes the necessary interrupts.
For larger datasets, the system with two NDP memory nodes
benefits from two factors: (1) the computation load is now
distributed over two nodes, only half of the data has to be
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Fig. 8. Inference using the NIPS5 SPN.

processed per node, (2) the total available memory bandwidth
is doubled for this setup. This results in a speedup close to 2x
compared to the single node system and over 3.5x compared
to the baseline.

C. Case Study: Inference in Sum-Product-Networks

The ability of our approach to NDP-accelerate functions
much more complex than those in the MPI standard opens
up new implementation options. In this section, we employ
the technology to move an entire machine-learning inference
computation to the NDP memory nodes.

To this end, we implement the inference in a Sum-Product
Network (SPN) as an NDP operation. In contrast to traditional
neural networks, SPNs are Probabilistic Graphical Models
(PGM), which handle probabilistic queries. The calculation in
an SPN is conducted by evaluating a directed, acyclic graph
consisting of products, sums, and leaf nodes (often histograms
of probability distributions) [8].

Inference in SPNs has been successfully accelerated using
FPGAs in prior work [9]. In contrast to that work, our NDP
approach does not incur the data transfer times of using a
PCIe-based FPGA board in a host system, as the data is
already resident in each of the NDP-capable memory nodes.

For this evaluation, we realize an accelerator for a prob-
abilistic query on the NIPS corpus [10], which in our case
is one of the smaller examples with just five input variables.
Figure 8 shows the corresponding acyclic graph, which has
five inputs in, two normalization factors cn, and computes a
probability as the result. In total, the calculation requires 10
floating-point multiplications and one addition. Note that this
kind of converging computation does not map well to GPUs
[9]. For the measurement of the execution time, we run 10,000
iterations of the calculation.

When implemented in C using double precision numbers
and submitted to Xilinx Vivado HLS for compilation, the
generated FPGA implementation requires 107 clock cycles
for a single loop iteration (=initiation interval, II) without
pipelining. Even when disregarding any memory latency, this
results in over one million clock cycles for computing all
iterations. However, this is actually a slow-down of roughly
50x over the non-NDP baseline, which uses EXTOLL RMA
primitives to move the data to the general-purpose host for
the computation, and then RMAs the results back. The reason
for that slow-down is the highly inefficient microarchitecture
created by Vivado HLS, which was not able to generate a
pipelined accelerator for this code. However, this deficiency
can be worked around by employing a different way to more
efficiently map the SPN to hardware.



TABLE I
PERFORMANCE EVALUATION OF NIPS5 INFERENCE

Pipeline depth texec (µs) SPN rows/µs Speedup

Baseline - 127.94 78.16 1.00
Generic HLS 107 5942.00 1.68 0.02
Custom HLS 24 57.49 173.94 2.23

As an alternative to the generic C/C++-based HLS of
Vivado, HLS from domain-specific languages and descriptions
has the potential to achieve much higher performance. E.g.,
when compiling image processing kernels from the Halide
DSL using a custom HLS system, a performance 2. . . 4x better
than using generic HLS has been reported [11].

We can follow a similar approach here, and use a custom
HLS compiler for generating high-performance SPN inference
accelerators [12]. When applied to the NIPS5 benchmark, the
custom SPN compiler generated a highly optimized hardware
block, having a 24-stage hardware processing pipeline capable
of accepting a new data item every cycle (II=1).

The results in Table I show that the generic Vivado HLS-
created kernel is the slowest implementation. With the fast
EXTOLL network, even being close to the memory cannot
compensate for this inefficient “accelerator” implementation.
On the other hand, the SPN unit created using the custom
SPN-specific HLS tool, performs as expected and achieves a
speed-up of roughly 2x over the baseline when operating in
NDP fashion.

V. RELATED WORK

Some aspects of this work have been addressed in related
work. These publications can generally be classified into three
groups: optimizations on the network, node acceleration, and
network-attached memories.

A. Optimizations on the Network

Improving the communication between nodes in a cluster
can greatly benefit MPI applications. Collective operations are
particularly communication-heavy, and have been the focus of
much research. Mellanox SHArP [13] presents an ASIC imple-
mentation, where aggregation trees are handled in hardware,
specifically in the switches. However, the switch ASICs only
provide the standard MPI collectives/reductions, and cannot
deal with the custom operations, such as the SPN inference,
that are the focus of our work.

Another approach to reduce the communication overhead is
the deployment of Smart NICs. The management queues in
Mellanox ConnectX-2 NICs [14] enable hardware offloading
of collective operations. Another Smart NIC implementation
uses the NetFPGA plattform for offloading MPI collectives
[15], resulting in lower latencies for the collective operations.
Our work takes a different approach, as we offload computa-
tion to NDP accelerators instead of offloading communication
to the NIC. Also, we can support much higher network speeds
of 2x 100G EXTOLL instead of the 4x 10G Ethernet ports on
the NetFPGA board.

Matteis et al. [16] propose a Streaming Message Interface, a
communication architecture with streams instead of MPI mes-
sages. A streaming-based model is very suitable for pipelined
and dataflow oriented execution, as it avoids large buffers.
However, that approach gives up the compatibility with the
MPI API that we have aimed for.

B. Accelerating Compute Nodes

Instead of offloading the network communication onto an
FPGA, it is also possible to use the FPGA as a standalone com-
pute node in an MPI cluster. A sample FPGA-based system
implementing TMD-MPI [17] utilizes soft-cores as generic
processing elements and only employs specialized hardware
accelerators for the Jacobi algorithm. The more general FPGA
implementation of Ringlein et al. [18] uses HLS to generate
hardware for a complete MPI node. The big advantage of the
FPGA-based nodes is the low network latency. The presented
proof-of-concept shows only a single kernel, which might limit
the usability for complex applications. Our system is capable
of handling multiple accelerators, and allows to expends
FPGA hardware area only for those kernels that actually yield
the highest performance gains, instead of spending area on
providing full general MPI functionality.

Near-data processing is a well-known option for improving
full-system performance, even outside of MPI clusters. JAFAR
[19] is an NDP accelerator for column-stores in database
systems. While the original idea targeted DRAM, an actual
hardware implementation was realized for processing close to
flash storage. It demonstrates a speedup of up to a 2.7x for
these NDP operations [20].

C. Disaggregated or Network-Attached Memories

Performance benefits of memory disaggregation have been
demonstrated for various applications. A system with ded-
icated memory blade-servers [21] has shown performance
improvements and cost-savings when employing memory dis-
aggregation. The work by Kwon et al. [22] presents advantages
of high-bandwidth disaggregated memory for deep learning.
The outcome is similar to our implementation. However,
instead of increasing the memory bandwidth at the compute
node, we move the workload close to the memory.

For accessing block devices over a network, protocols such
as NVMe-over-fabrics [23] are available. The focus here is
on high-bandwidth, low-latency access, NDP computations are
not yet covered. Initial discussions on their inclusion in the
underlying NVMe standard have already started, though.

Major computer vendors have founded the Gen-Z Con-
sortium [24] to develop a “memory-semantic” protocol for
the interconnection of processors, memories and accelerators.
The consortium proposes a common fabric to connect various
devices such as memory, GPUs, and accelerators to hosts.
However, this new standard is not widely adopted yet and, in
contrast to our approach of requiring only minor modifications
to existing codes, is likely to require more significant changes
in existing applications. To our knowledge, no datacenter-scale
deployments of Gen-Z exist as of now.



VI. CONCLUSION AND FUTURE WORK

This work presented a new proof-of-concept system to
utilize near-data processing in a disaggregated memory sys-
tem. By extending the system-on-chip providing the EX-
TOLL 100G networking and memory controller functions with
compute capabilities, and wrapping these in a simple MPI-
based programming interface, the system is easily usable from
existing applications.

On the hardware side, we presented an automated toolflow
that considerably simplifies creating the NDP processing ac-
celerators. When fed with codes amenable for HLS, such as the
standard MPI collective/reduction operators, our flow can per-
form all of the complex and often error-prone steps of creating
FPGA accelerators automatically. It can also easily encapsulate
the even higher-performance accelerators generated by custom
domain-specific HLS systems, as we demonstrated for the ML
SPN inference use-case.

When using a single of our NDP-capable memory nodes,
we achieve speed-ups of around 2x over the disaggregated, but
non-NDP baseline. The performance of our approach scales
up with more NDP memory nodes, as more NDP units will
then execute in parallel and more local memory bandwith is
available.

The key barriers to even higher performance gains here were
the practical limitations of the base hardware of our current
Aspin v2 NDP platform. A successor board having newer,
larger and faster FPGAs, as well as higher memory capacity
and bandwidth, is already in fabrication.

Two other aspects of our approach could benefit from further
investigation as well: First, so far, we have focused only on the
computation parts of the problem. With the coming multi-link
hardware, we can also use better inter-board communication
strategies (e.g., tree-structured reductions). Second, our current
work did not address the efficient deployment of the FPGA
bitstreams for the NDP accelerators over the network. We
intend to use Dynamic Partial Reconfiguration for this purpose
in the new system.
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